線状降水帯を想定した 都市域の地下空間浸水について

草野 魁叶¹·石垣 泰輔²·戸田 圭一³

¹学生会員 関西大学大学院 理工学研究科 (〒564-8680 大阪府吹田市山手町三丁目 3-35) E-mail: k185752@kansai-u.ac.jp

²正会員 関西大学教授 環境都市工学部 (〒564-8680 大阪府吹田市山手町三丁目 3-35) E-mail: ishigaki@kansai-u.ac.jp

³フェロー会員 京都大学大学院教授工学研究科 (〒615-8540 京都市西京区京都大学桂) E-mail: toda.keiichi.4z@kyoto-u.ac.jp

近年,地球温暖化に伴う気候変動の影響から降雨形態が変化する可能性が高まっている.令和2年7月 豪雨では,線状降水帯の影響によって短時間で複数のピークを有する集中豪雨が観測された.本研究では, 大阪管区気象台において観測史上1位タイである,2011年8月27日に観測された1時間降水量77.5mmの 局所的な集中豪雨の降雨データを用いて複数のピークを有するモデル降雨を作成した.大阪市の海老江処 理区において InfoWorks ICM による内水氾濫解析を行うことで,線状降水帯を想定した降雨発生時におけ る大規模地下空間の浸水危険性について検討した.結果から,降雨に複数回ピークが発生すると,地下空 間への氾濫水の総流入量は急激に増加しており,局所的な短時間集中豪雨が複数のピークを有すると地下 空間の浸水危険性が高まることが明らかとなった.

Key Words: line-shaped rainbands, short-time heavy rainfall, mega-underground space, pluvial flood

1. はじめに

近年,地球温暖化に伴う気候変動の影響から降雨形態 が変化する可能性が高まっている.我が国では気象災害 の頻度や強度が増加傾向を示しており,時間雨量 50mm 以上の降雨発生回数が 30年前の約 1.4 倍に増加し,日降 水量 100mm,200mm以上の発生日数も増加している¹⁾. 2013年8月には都市部の大阪市において局地的な大雨に よって内水氾濫が発生し,道路冠水による一部通行止め やビル地下の店舗の浸水による浸水被害が発生している.

本年度(2020年)は、日本付近に停滞した前線の影響で、 7月3日から7月31日にかけて西日本から東日本、東北 地方の広い範囲で大雨となった「令和2年7月豪雨」に よって各地で河川の氾濫や人的被害や物的被害が発生し た.特に、九州地方では13事例の線状降水帯が確認さ れている².熊本県人吉市のアメダス観測データ³では4 日午前0時頃から急激に降水量が増加し、10分間降水量 10mmを超える豪雨が3回断続的に発生しており、複数 のピークを有する集中豪雨が観測された.

一方,低平地で急速に発展した東京や大阪などの都市 域では,都市化の進展により不浸透域が増加しているた めに雨水排除が下水道に依存してしまっていることで, 短時間で局所的な大雨が降った場合には内水氾濫が生じ ることになり,発展している地下空間への氾濫の流入や 被害の発生が懸念される.そのため,内水氾濫に伴う地 下空間の浸水に関して,現在まで様々な形で研究がなさ れている.

森兼ら⁴は、大阪市の中心部に広がる海老江処理区を 対象地域として、長時間の記録的降雨である東海豪雨と、 短時間の記録的降雨である岡崎豪雨を対象に内水氾濫解 析を行い、岡崎豪雨の方が地下空間浸水への影響が大き いことを指摘している.

尾崎ら⁹は、大規模地下街を有する大阪市の中心部を 対象に、3種類のモデル豪雨を用いて InfoWorks CS によ る地上の内水氾濫解析と地下の浸水解析を行っている. 3種類のモデル豪雨の総降雨量はいずれも 180mm だが、 降雨継続時間を変化させ、各降雨の降雨強度は、60、 120、180mm/hr としている.結果から、総降雨量が同じ 場合には降雨強度が大きいほど地下への流入箇所数や総 流入量が多くなると述べている.

太田ら⁹は、大阪市の海老江処理区を対象として、想 定最大規模における複数の降雨形態を用いて内水氾濫解 析を行い,地下空間の浸水危険度評価について検討している.地上の氾濫解析では,降雨形態によって浸水開始から収束するまでの時間にずれが生じていたが,地下の氾濫解析については中央集中型において浸水深が大きくなる傾向を示している.

これまでに挙げた既往研究では降雨特性の違いによる 地下浸水の危険性について示している.しかしながら, 令和2年7月豪雨では線状降水帯の影響により,短時間 で複数のピークを有する集中豪雨が観測されており,都 市域においてこのような降雨が発生した場合の内水氾濫 状況や地下浸水への影響を分析している研究はあまりな い.そこで本研究では,大阪管区気象台(大阪市中央区) において観測史上1位タイである,2011年8月27日に観 測された1時間降水量77.5mmの局所的な集中豪雨の降 雨データを用いて複数のピークを有するモデル降雨を作 成し,大阪市の海老江処理区において InfoWorks ICM(以 下,IWICM)による内水氾濫解析を行うことで,線状降 水帯を想定した降雨発生時の地下空間の浸水危険性につ いて検討する.

2. 対象地域の概要

(1) 対象地域

本研究では、大阪市の海老江処理区を対象に内水氾濫 解析を行う.海老江処理区は、大阪市の北区の大部分、 福島区、此花区の一部の下水処理を担っており、処理区 の面積は12.15km²となっている.図-1には対象地域の地 盤高とポンプ場の位置を示している.処理区内には1つ の処理場と3つの抽水所が存在しており、放流先は海老 江処理区の北側を流れる新淀川や西側を流れる正連寺川 となっている.地盤高は東側が比較的高く、中心部から 西側にかけて0m地帯が広がっている.また、梅田地区 には公共の地下出入り口のみで約140箇所以上あり、約 1km四方に広がる日本最大級の地下空間が広がっている.

(2) 対象地域における局地的な大雨

大阪管区気象台と対象地域の梅田地区で観測された実 績降雨のハイエトグラフを図-2に示している.2011年8 月27日の降雨は、大阪管区気象台における観測史上1位 タイの1時間に77.5mmを記録している.総降雨量は 88.0mm,降雨継続時間は3時間20分であり、短時間に 集中した降雨である.この影響で、大阪市などで、床上 浸水(87棟)、床下浸水(234棟)、道路冠水(9箇所)等の浸水 被害が発生している(29日11時現在:大阪府調べ).

また,2013 年 8 月 25 日の降雨は,大阪管区気象台に おいて 10 分間降雨量 27.5mm と観測史上 1 位の値を更新 しており,床上・床下浸水や道路の冠水などの被害が発

図-1 対象地域の地盤高とポンプ場の位置

(上:2011年8月27日,下:2013年8月25日)

生した.対象地域の梅田地区においても 10 分間降雨量 23.0mmが観測されているが,2時30分から12時00分ま での短時間で降雨のピークを3回有する降雨でもあった. そのため,都市部である大阪市においても,令和2年7 月豪雨で観測された降雨と同様に,短時間に複数のピー クを有する集中降雨の発生が懸念される.

3. 氾濫解析方法

(1) 氾濫解析モデルの概要

氾濫解析には都市下水道と河川流域の両方の統合解析 が可能な IWICM を用いる.本モデルは、各地表面(道路, 屋根,浸透域)に応じて有効降雨を算出し、マンホール への流入量を算出する地表面モデルと、地表面モデルに

図-3 氾濫解析モデルの概要図

より算出された各マンホールに流入するハイドログラフ を用い,Saint Venant 方程式を適用して管渠内の水理解析 を行う下水道管路網モデル,下水道から地表面へ溢れた 水の流れを,浅水方程式を用いて解析する地上氾濫解析 モデルから構成されている.図-3には解析モデルの概 要を示している.各モデルは連続的に計算がなされ,各 マンホールにおいて溢水および再流入が考慮できる.ま た,地下空間への流入量を算定するため,地下空間への 出入口の幅とマウンドアップ高を現地で調査し,出入口 モデル(堰モデル)としてモデル化している.出入口をマ ンホールで再現し,道路部と階段部の境界に仮想の堰を 設定することで道路における浸水深が堰の頂部高を越え た場合に地下空間へ流入する.堰の公式は以下の式を用 いている.

$$Q_0 = C_d \sqrt{g} B D_u^{3/2} \tag{1}$$

ここで, Q_0 :自由吐き口流, C_d :流量係数(0.85),g: 重力加速度(m/s²),B:堰の幅(m), D_u :堰頂部の越流水 深(m)である.

地上氾濫モデルにおいて、本研究では氾濫水は主に道路を流れるものとしており、建物等の住区内へ流れこむ水に関しては考慮していない. 道路面の粗度係数は0.043とする.下水道処理施設には、雨水を強制的に排除するためにポンプ場を設置しているが、ポンプは稼働させている.本研究では、浅野らっによってキャリブレーションが図られているモデルを使用しているため、浸水深にして10cm程度の精度を有すると判断している. また、地下鉄や地下街の出入口には止水板を設置できる箇所があるが、本研究では水防活動が行われず、止水板が設置されないものとしている.

(2) 地下街モデルの概要

本研究で用いる IWICM は下水道ネットワークの解析 ソフトであるため,地下構造物として下水道管渠,マン

ホールしかモデル化ができない.そのため,梅田地区の 地下街は現地調査の結果に基づき,矩形管渠として IWICM 上でモデル化を行っている.また,地上の出入 ロや地下鉄駅のホームと地下街との接続通路も管渠とし てモデル化している.

(3) 降雨条件

本研究では、対象地域において線状降水帯の影響によって短時間で複数のピークを有する集中豪雨が観測された場合を想定し、大阪管区気象台における2011年8月27日の実績降雨から降雨のピークを有する15時00分から17時00分の2時間分を用いて、氾濫解析で使用するハイエトグラフを作成する。令和2年7月豪雨では降雨のピークが断続的に発生していたことから、2時間分(以下、ピーク1回)の降雨波形を連続して追加していき、4時間分(以下、ピーク2回)と6時間分(以下、ピーク3回)のハイエトグラフを作成している。図-4には3つのモデル降雨のハイエトグラフを示している。ピーク1回の総降雨量は84.5mmで、ピーク2回では2倍の169.0mm、ピーク3回では3倍の253.5mmとなっている。これら3つのハイエトグラフを用いて内水氾濫解析を行う。計算時間は24時間とする。

本研究で計算対象とした道路面の全体面積は約 324ha であった. 図-5には各モデル降雨による地上の最大浸水 結果を示している. また, 図-6には解析モデルに各モデ ル降雨を与えたときの有効降雨総量とマンホールからの 溢水量及び道路面の最大浸水面積割合を示している.結 果から、ピーク1回の最大浸水面積は約56haで道路面の 約 17%が浸水していた. 地盤高では, 対象地域の西側 で 0m 地帯が広がっているが、下水処理場における雨水 排水によって浸水深は 0.25m 以下となっていた. しかし, 地盤高が周辺よりも低い窪地である梅田地区の北側では 浸水深が0.25m~0.50mとなっており、浸水域もこの区域 に集中していた.また、一部では浸水深が 0.50m 以上と なっている道路があり,成人男性におけるセダン型の水 没車からの脱出限界水深 0.56m %と同程度の高さとなっ ていた. ピーク2回では道路面の最大浸水面積が約78ha に増加しており、浸水面積割合は約24%であった. ピー ク2回になると、下水道による雨水排水が完了する前に 再度降雨が発生するため、マンホールからの溢水量が増 加し、内水氾濫による道路面の浸水面積割合も同じよう に増加していると考えられる.また、浸水範囲は梅田地 区の北側でさらに広がっており、浸水深は 0.75m 以上と なる箇所が確認された. ピーク3回では道路面の最大浸 水面積が約84ha,浸水割合は約26%であった.図-6から, ピーク3回はピーク2回に対して、降雨量の増加よって マンホールからの溢水量は増加しているが、道路面の最 大浸水面積は急増していなかった.しかし、梅田地区の 北側において 0.75m 以上の浸水深となる範囲が拡大して いた. この区域はショッピングモールや飲食店などが立 ち並んでおり、昼夜問わず人通りや交通量が多いため、 内水氾濫発生時には人的被害の発生が懸念される.一方, 対象地域の西側はピーク3回においても浸水範囲は限ら れており、浸水深は0.25m~0.50mであるため、道路管理 者や下水道管理者,警察署,消防署によって早期に水防 活動が行われることで交通障害や人的被害などの未然防 止が可能であると考えられる.

5. 大規模地下空間の浸水特性

(1) 地下空間へ流入する氾濫水の流入量

図-7に各モデル降雨における地下空間への内水氾濫水の総流入量を示す.地下空間としては、梅田地区に位置する地下街、地下街と接続している地下鉄駅5駅(御堂筋線梅田駅・谷町線東梅田駅・四つ橋線西梅田駅・JR東西線北新地駅・阪神本線梅田駅)及び対象地域に点在する地下鉄駅13駅の3つに分類している.4章から、ピー

図-7 地下空間への流入量

⁻¹⁰⁷⁻

図-8 地下街出入口の流入状況

ク1回においても地下街が位置する梅田地区周辺では浸 水する道路面があったが、地下空間への氾濫水の流入量 はわずかであった. これは、道路面の浸水深が地下街出 入口のマウンドアップ高を超える高さと同程度かそれ以 下であったことで、氾濫水の流入が発生した出入口が少 なかったためである. ピーク2回になると、地下空間へ 氾濫水の流入量はピーク 1 回に対して約 24 倍に増加し ていた.また、地下街と接続している地下鉄駅の流入量 も増加していた. 地下鉄駅は地下街よりもフロアレベル が低く、地下街へと流入した氾濫水は地下鉄駅へと移動 するため、浸水の危険を察知した段階で地下鉄駅では水 防活動を行う必要がある. さらに、ピーク3回になると 地下空間への氾濫水の流入量が急増し、ピーク2回に対 して約3倍, ピーク1回に対しては約78倍となってい た. 地下街と接続していない地下鉄駅は、梅田地区の北 側に位置している中津駅と中崎町駅で流入が発生してお り、ピーク回数が増えると地下鉄軌道内を氾濫水が伝播 することで地下鉄の浸水範囲が拡大する危険性が示唆さ れる. 降雨量の増加率以上に地下空間への流入量が増加 してることから、短時間で集中豪雨が断続的に発生する と地下空間浸水の危険性が高まることが明らかとなった.

(2) 降雨のピーク回数と氾濫水の流入状況の関係

図-8には各モデル降雨における地下街出入口への氾濫 水の流入状況を示している. ピーク1回において氾濫水 が流入していた出入口は梅田地区の北東側に位置する3 箇所で,梅田地区の西側では内水氾濫は発生していなか った. ピーク2回になると,13箇所の出入口から氾濫水 が流入しており,梅田地区の北東側で箇所数が増加して いた. 道路面の浸水深も0.50m~0.75mとなっている範囲 が広がっているため,北東側では利用者が出入口から地 上の避難場所まで移動できない可能性がある. ピーク3 回では17箇所に出入口から氾濫水が流入していた. ピ ーク2回からピーク3回で出入口の流入箇所数は急増し ていないが,図-7から地下空間への流入量は急増してい るため,ピーク3回になると利用者は地下街通路におい ても移動できない危険性が考えられる.

図-9 地下街出入口の浸水深 (実線:出入口 A,破線:出入口 B, 点線:階段上の移動限界水深⁹)

図-9には氾濫水の流入量が多い2箇所の地下出入口に おける出入口頂部の浸水深を示している. 地下浸水時の 避難に関する既往研究⁹では、地下出入口で氾濫水が流 入する場合の階段上の歩行者に与える危険性と階段上の 越流水深の関係性を実物大階段模型を用いて求めている. 結果から、階段を通じた避難行動が困難になる階段上の 越流水深は 0.3m 程度であると述べている. 図-9 から、 ピーク1回では出入口Aにおいて計算開始から約70後 に浸水深が上昇し始めており、計算開始から約100分後 に浸水深がピークとなっていた. 降雨のピークが計算開 始から20分後で、降雨と浸水深のピークには約80分の 差があった、ピーク2回になると2回目の降雨開始から 約 10 分で浸水深が上昇し始めていた. また, 降雨と浸 水深のピーク差は約85分であった. ピーク2回では計 算開始から約5時間で浸水深が出入口の頂部高以下にな るが、ピーク3回では浸水深が0.3mを超えており、約1 時間は階段を通じて地下街から地上への避難行動が困難 になる高さとなっていた.出入口Bにおいても、降雨の ピーク数が増えると浸水深は高くなっていた. 出入口 B ではピーク2回において2回目の降雨開始から約60分で 浸水深が上昇し始めるが、ピーク3回になると出入口A と同様に浸水深が下がり切る前に再度上昇していた.

結果から、降雨のピーク回数と地下空間の浸水危険性 の関係性を明らかにすることができた.降雨のピーク回 数が増えると地下街出入口における浸水深の上昇が始ま る時間は短くなり、浸水深も高くなっていた.都市域 の地下空間は地下街や地下鉄などが接続する多層構造と なっているため、利用者の避難に対して出入口における 水防活動(止水板の設置など)の早期完了によって避難余 裕時間を作り出すことが重要である.そのため、本研究 の結果は既往研究 45007と共に内水災害に対する水防・ 避難誘導計画策定などに資するものであると考えられる.

6. おわりに

本研究では、大阪管区気象台(大阪市中央区)において 観測史上1位タイである,2011年8月27日に観測された 1時間降水量77.5mmの局所的な集中豪雨の降雨データを 用いて複数のピークを有するモデル降雨を作成し、大阪 市の海老江処理区において IWICM による内水氾濫解析 を行うことで、線状降水帯を想定した降雨発生時の地下 空間の浸水危険性について検討した. 地上の浸水結果か ら,対象地域の北東部は内水氾濫に対して脆弱な地域で あることを明らかにした.また、地下街出入口における 浸水結果から、降雨のピーク回数が増えると地下街出入 口における浸水深の上昇が始まる時間は短くなり、浸 水深も高くなっていた. これらより, 局所的な短時間集 中豪雨が複数のピークを有すると地下空間の浸水危険性 が高まることが明らかとなった.都市域の地下空間は多 層構造となっているため、利用者の避難に対して出入口 における水防活動の早期完了によって避難余裕時間を作 り出すことが重要である. 今後は、地下街から地上の避 難所への安全避難について地上の浸水結果も合わせて検 討を行っていく予定である.

参考文献

- 気象庁: 大雨や猛暑日など(極端現象)のこれまでの変化, https://www.data.jma.go.jp/cpdinfo/index_extreme.html (2020年6月09日閲覧).
- 日本気象協会社会・防災事業部:令和2年7月豪雨 における大雨の特徴 -線状降水帯,異例の11時間 以上継続-,https://www.jwa.or.jp/wpcontent/uploads/2020/07/71aee6f49711dc5f518133fa8652ea8c-
- 1.pdf, 2020.
 3) 気象庁:過去の気象データ検索,
- https://www.data.jma.go.jp/obd/stats/etrn/view/10min_s1. php?prec_no=86&block_no=47824&year=2020&month= 7&day=4&view= (2020 年 8 月 27 日閲覧).
- 4) 森兼政行・石垣泰輔・尾崎平・戸田圭一:大規模地 下空間を有する都市域における地下空間への内水氾 濫水の流入特性とその対策,土木学会論文集 B1(水 工学), Vol.67, No.4, I_967-I_972, 2011.
- 5) 尾崎平・浅野統弘・石垣泰輔・戸田圭一:短時間集 中豪雨に伴う内水氾濫による地下街浸水特性の考察, 土木学会論文集 B1(水工学), Vol.70, No.4, pp. I_1417-I1423, 2014.
- 6) 太田和樹・石垣泰輔・尾崎平・戸田圭一 : 想定最大 降雨による内水氾濫時の地下街の浸水危険度につい て、地下空間シンポジウム論文・報告集、Vol.24, pp.180-187, 2019.
- 浅野統弘・尾崎平・石垣泰輔・戸田圭一:密集市街 地における内水氾濫時の歩行避難および車両移動の 危険度評価,土木学会論文集 B1(水工学), Vol.69, No.4, L1561-L1566, 2013.
- 高橋祐樹・石垣泰輔・馬場康之・戸田圭一:浸水した大規模地下駐車場からの避難に関する検討,土木 学会論文集 F2(地下空間研究), Vol.69, No.1, 1-10, 2013.
- 5) 馬場康之・石垣泰輔・戸田圭一・中川一:実物大模型を用いた地下浸水時の避難困難度に関する実験的研究,土木学会論文集 F2(地下空間研究), Vol.67, No.1, 12-27, 2011.

INUNDATION OF UNDERGROUND SPACES IN URBAN AREA BY LINE-SHAPED RAINBANDS

Kaito KUSANO, Taisuke ISHIGAKI and Keiichi TODA

There is an increasing possibility that rainfall patterns will change due to the effects of climate change associated with global warming. The Heavy Rain Event of July 2020, heavy rainfall with multiple peaks in a short time was observed due to the influence of line-shaped rainbands. In this paper, a model rainfall with multiple peaks was created using the rainfall data of 77.5 mm/hr observed on August 27, 2011 in Osaka. Inundation simulation in Ebie treatment area were done by InfoWorks ICM. And the inundation risk of underground space by rainfall with multiple peaks was examined. The results show that the total inflow of flood water into the underground space increased rapidly when the rainfall had multiple peaks. It was clarified that the risk of inundation in the underground space increases when the local short-time heavy rainfall has multiple peaks.