地下構造物における材料劣化の傾向分析

ANALYSIS OF MATERIAL DEGRADATION WHICH HAS OCCURRED IN UNDERGROUND STRUCTURES

牛田 貴士1*・仲山 貴司2・津野 究2・焼田 真司2

Takashi USHIDA1*, Takashi NAKAYAMA2, Kiwamu TSUNO2, Shinji YAKITA2

Underground structures, which are key components of infrastructures, have been aging, and maintenance of them is considered as very important task. Material degradation in underground structures have been predicted based on the parameters calculated from the material degradation in structures on the ground, since the degradation have not been analyzed on a nationwide scale. In this paper, the parameters for prediction of material degradation in underground structures are presented by the analysis of 160 field data. Furthermore, trends of material degradation in underground structures are revealed.

Key Words : chloride attack, carbonation, field data, trend analysis, cut-and-cover tunnel

1. はじめに

地下構造物は社会基盤構造物の重要な構成要素である が、近年では経年が進行しており、それらの維持管理に 対する関心が高まっている.たとえば、都市部の地下鉄 道では、地下鉄営業キロ約800kmの1/4を経年40~80年程 度の開削トンネルが占めており、それらの計画的な維持 管理や補修が重要度を増している.

ここで、これまで報告されている開削トンネルの変状 事例の多くは、材料劣化によるもの^{例えばD}である.その ため、地下構造物における適切な材料劣化の予測が、計 画的な維持管理に資するものと期待される.

地上構造物については、現場調査データ^{例えば2,3}が充実 しており、それらの全国的な分析も行われている. それ により、地域や塩害が海岸線からの距離に依存する⁴な どの傾向が見出されている. しかし、地下構造物につい ては、全国的に傾向を分析して整理した事例がないため、 材料劣化の将来予測では、地上構造物の現場調査データ から設定された予測パラメータを用いることが一般的で ある.

そこで、本研究では、地下構造物で実施された材料劣 化に関する現場調査データ⁹を分析して、地下構造物に おける平均的な材料劣化の予測パラメータを示すととも

図-1 調査対象トンネルの経年分布

に、地下構造物の材料劣化傾向を把握した.また、得ら れた予測パラメータを用いて将来予測の一例を示した.

2. 地下構造物における材料劣化の傾向分析

(1) 調査データの概要

本研究では,鉄道の開削トンネルで実施された中性化, 塩害の現場調査データ(以下,調査データという)を分 析して,地下構造物における材料劣化の傾向を把握した.

¹正会員 (公財)鉄道総合技術研究所 構造物技術研究部 Structure Technology Division, Railway Technical Research Institute,

(E-mail:ushida@rtri.or.jp)

²正会員 正会員 (公財)鉄道総合技術研究所 構造物技術研究部 Structure Technology Division, Railway Technical Research Institute

キーワード:中性化,塩害,現場調査データ,傾向分析,開削トンネル

図-1 に調査対象トンネルの経年分布を示す.開削トンネルの調査時の経年は5~80年であった.高度経済成長期に建設された経年40年前後の開削トンネルにおける調査データが多いことが分かる.中性化,塩害の調査データ数はそれぞれ138,22である.本研究でいう調査データとは、コア法またはドリル法⁹で採取された3点以上の試料の平均値である.

(2) 中性化

a) 概要

図-2に中性化による変状の進行を示す.中性化とは, 空気中の二酸化炭素によって生じるコンクリートの劣化 現象である.中性化は,コンクリート表面から進行して, 鉄筋付近まで進行すると,鉄筋の腐食を誘発すると考え られている.

中性化深さの予測には,式(1)の経年の平方根に比例 する予測式⁷が提案されており,実務でも広く用いられ ている.

$$y = \alpha \sqrt{t} \tag{1}$$

ここに, y:中性化深さ α:中性化速度係数 t:経年

中性化速度係数*a*は,コンクリートの配合や環境条件 等によって決まる係数である.これに着目して,開削ト ンネルにおける中性化の傾向を把握する.

①調査データ中央値(2.71) ②W/C=50%の設計値(2.45) ③W/C=60%の設計値(4.82) ④W/C=70%の設計値(7.18)

b) 調査データと傾向分析

図-3 に中性化深さの調査データを示す.調査対象トンネルの経年は5~80年の範囲であり、中性化深さは0~50mmの範囲に分布していることが分かる.

図-4に中性化速度係数αの頻度分布を示す.また,同 図には水セメント比が50,60,70%のときの設計値⁸も 示す.調査データの中央値は2.71 mm√年であった.こ れは,水セメント比50,60%の設計値の中間に位置して おり,50%の設計値に近い値である.調査対象トンネル のW/Cは概ね55%であったため,地下構造物における平 均的な中性化速度は,設計値をやや下回る程度であるこ とが分かった.

図-5に調査データと中性化深さの予測値の関係を示す. 中性化速度係数 a/c,調査データ中央値を用いた予測値 は,調査データの50%程度を包括しており,平均的な中 性化の進行を予測していることが分かる.調査データは ばらつきを持って分布しており,水セメント比70%の設 計値を用いた予測値は,調査データを概ね包括している ことが分かった.

(3) 塩害

a) 概要

図-6に塩害による変状の進行を示す.塩害とは、塩化 物イオンCIによって生じるコンクリートの劣化現象で ある.これが、コンクリート表面から拡散して、鉄筋位 置の濃度が発錆限界を超過すると鉄筋の腐食を誘発する と考えられている.

図-7に塩化物イオン濃度の調査データを示す.塩化物 イオン濃度はコンクリート表面側の測定値ほど高くなる 傾向があり、コンクリート表面付近では0~40 kg/m³の範 囲に分布していることが分かる.

調査データはすべて、感潮河川の付近で採取されたも のであった.感潮河川とは潮の干満の影響を受けて海水 が流入する河川である.その付近では地下水も塩分混じ りとなることが多く、それが漏水となって開削トンネル に塩害を生じさせることが知られている.

塩化物イオンの拡散には、式(3)のFickの法則に従う予 測式⁸が提案されており、実務でも広く用いられている.

$$C(x,t) = C_1 \left\{ 1 - erf \frac{x}{2\sqrt{D_c t}} \right\} + C_2$$
(2)

ここに, C(x,t): 深度x. 経年tにおける塩化物イオン濃度 C₁: コンクリート表面の塩化物イオン濃度

C2: 初期塩化物イオン濃度

D_c: 塩化物イオン拡散係数

塩化物イオン拡散係数Dcはコンクリートの配合等によ

①調査データ中央値(29.8) ②W/C=50%の設計値(160) ③W/C=60%の設計値(313)

図-8 塩化物イオン拡散係数Dcの頻度分布

①調査データ中央値(3.2)②飛来塩分設計値(5.1)③干満帯設計値(13)

図-10 調査データと鉄筋位置塩化物イオン濃度の予測値

って決まる係数であり、コンクリート表面の塩化物イオン濃度C₁(以下,塩化物イオン表面濃度C₁)は構造物の 環境条件によって決まる値である.

調査データを最小二乗法でフィッティングして,これ らの値を検討することで,開削トンネルにおける塩害の 傾向を把握する.

また,鉄道構造物の設計では,飛来塩分に起因する塩 害に対して,Fickの法則に基づく次式⁸が示されている.

$$C(x,t) = S\sqrt{t} \left[\exp\left(-\frac{x^2}{4D_c t}\right) - \frac{x\sqrt{\pi}}{2\sqrt{D_c t}} \left\{ 1 - erf \frac{x}{2\sqrt{D_c t}} \right\} \right] + C_2 \qquad (3)$$

ここに, S: 表面濃度係数

上式におけるSvhは,式(2)における塩化物イオン表面 濃度Gに相当するものである.

b) 調査データと傾向分析

図-8に塩化物イオン拡散係数D_cの頻度分布を示す.また、同図には水セメント比が50、60%のときの設計値⁸ も示す.調査データの中央値は29.8 mm²/年であり、多く が50%の設計値よりも小さいことが分かる.調査対象ト ンネルのW/Cは概ね55%であったため、地下構造物の平 均的な塩化物イオン拡散係数D_cは、設計値を下回る傾向 があることが分かった.しかし、その一方で、設計値よ り大きな値も散見されることが分かった.

図-9に塩化物イオン表面濃度C₁の頻度分布を示す.また、同図には飛来塩分設計値、干満帯設計値⁸も示す. 飛来塩分設計値は、表面濃度係数Sを0.9、経年を調査データの平均である32年として算出したものである.調査データの中央値は3.2 kg/m³であり、干満帯および飛来塩分の設計値よりも小さいことが分かる.しかし、その一方で、これらの設計値より大きな値も散見されることが分かった.

図-10に調査データと鉄筋位置塩化物イオン濃度の予 測値の関係を示す.なお,鉄道の開削トンネルの設計⁹ を参考に,かぶりの設計値は50 mm,施工誤差は10 mm として予測した.調査データの中央値を用いた予測値は, 調査データの50%程度を包括しており,平均的な塩化物 イオン拡散の進行を予測していることが分かる.また, 調査データはばらつきを持って分布しており,干満帯設 計値を用いた予測は,調査データを概ね包括しているこ とが分かる.

表-1 地下構造物における材料劣化の予測パラメータ

項目		数值	備考
中性化	α	2.71 mm/√年	調査データ中央値
塩害	D_c	29.8 mm ² /年	
	C_1	3.2 kg/m^3	

図-11 中性化の将来予測フロー

図-12 塩害の将来予測フロー

(4) まとめ

鉄道の開削トンネルで実施された中性化,塩害の調査 データを分析して,以下の傾向を把握した.

表-1に示す地下構造物における材料劣化の予測パラメ ータを得た.また,これらの値を用いた予測値は,調査 データの平均的な材料劣化の進行を予測していることを 把握した.

一方,地下構造物における材料劣化の調査データは, ばらつきを持って広く分布することを把握した.このた め,将来予測で,そのばらつきを考慮することにより, より精度が向上すると考えられる.

3. 地下構造物における材料劣化の将来予測

(1) 概要

図-11に中性化の将来予測フローを示す.中性化により鉄筋腐食が発生して、ひび割れが発生した時点で断面 修復を実施して初期と同等まで性能を回復することとした.また、断面修復材の中性化進行を予測して、ひび割 れ発生時期に達した時点で再補修を行うシナリオを想定 した.

図-12に塩害の将来予測フローを示す.将来予測のシ ナリオは中性化の将来予測と同様である.

(2) 予測条件

表-2に構造物の緒元に関する予測条件を示す.鉄道の 開削トンネルの設計を参考に、かぶりの設計値は50 mm、

図-13 腐食減少率Abssの予測値

± 0	#************************************
7 <u>₹</u> ~2	1月1日初の施工に送りるて創業1年

かぶり		コンクリート	鉄筋
設計値	施工誤差	水セメント比	
50 mm	10 mm	55 %	D16

表-3 材料劣化に関する予測条件

	パラメータ	発錆限界
中性化	表−1の通り*	中性化残り10mm
塩害		鉄筋位置CT濃度1.2 kg/m³

※断面修復工の材料劣化特性も同等と仮定

	腐食速度	ひび割れ発生時期 (腐食開始からの経年)
中性化	式(4)	13年
塩害	式(5)~(7)	18年

施工誤差は10 mmとした.また,調査対象トンネルの緒 元を参考に,コンクリートの水セメント比は55%,鉄筋 は配力筋を想定してD16とした.

表-3に材料劣化に関する予測条件を示す.材料劣化の 予測パラメータは、調査データの中央値(表-1を参照) を用いた.また、断面修復工の材料劣化はコンクリート と同等であると仮定した.発錆限界は、鉄道構造物の設 計⁸に準じて設定した.

表-4にひび割れ発生時期に関する予測条件を示す.鉄筋の腐食速度は、鉄道構造物のコンクリート維持管理標準のに準じて設定した.図-13に腐食減少率の予測値を示す.本検討では、ひひび割れ発生時の腐食減少率A_{kos}を1%と仮定して、腐食開始からひび割れ発生までの経年を算出した.

中性化,塩害に起因する鉄筋の腐食速度をそれぞれ式 (4),式(5)~(7)に示す.また,腐食減少率A_{kas}の定義を式 (8)に示す.

$$\frac{dr/dt}{dt} = 3.0 \times 10^{-3} \tag{4}$$

$$dr/dt = 40.5 \times 10^{4.324 + Y} \tag{5}$$

$$Y = 0.457Cl^{-} - 9.79 \left(Cl^{-} \le 6.89 \right) \tag{6}$$

$$Y = -6.64 \left(Cl^{-} > 6.89 \right) \tag{7}$$

ここで, *dr/dt*:鉄筋の腐食速度(mm/年) *Cl*:鉄筋位置における塩化物イオン濃度

$$A_{loss} = \frac{(r_0 - r)^2}{r_0^2} \times 100$$
(8)

ここで、A_{los}: 腐食減少率 r₀: 初期の鉄筋半径 r: 腐食した鉄筋半径

(3) 中性化

調査データの分析から得た予測パラメータを用いて, 地下構造物における平均的な速度で中性化が進行する場 合の将来予測を行い,以下の予測結果を得た.

中性化深さが発錆限界に到達するまでの経年は123 年 であり、ひび割れ発生時の経年は136 年との予測結果を 得た.これより、中性化は、進行速度が遅い材料劣化現 象であることが分かる.図-14に中性化に関する将来予 測結果の模式図を示す.

(4) 塩害

調査データの分析から得た予測パラメータを用いて, 地下構造物における平均的な速度で塩害が進行する場合 の将来予測を行い、以下の予測結果を得た.

鉄筋位置の塩化物イオン濃度が発錆限界に到達するま での経年は23年であり、ひび割れ発生時の経年は41年 との予測結果を得た.これより、塩害は、中性化と比較 して進行速度が速い劣化現象であることが分かる.図-15に塩害に関する将来予測結果の模式図を示す.

(5) まとめ

表-5に地下構造物の平均的な補修時期と補修回数を示 す.なお、本検討では、施工継目や初期欠陥等の影響を 考慮していない.地下構造物における中性化では、ひび 割れ発生時の経年が136年と遅く、断面修復によって初 期と同等まで性能を回復した場合、供用中に再補修が必 要となる可能性は低いと考えられる.また、塩害では、 ひび割れ発生時の経年が41年であり、断面修復によっ て初期と同等まで性能を回復した場合でも、供用中に再 補修が必要となる可能性が高いと考えられる.

4. 結論

地下構造物で実施された材料劣化に関する現場調査デ ータの傾向分析と、その結果を用いた将来予測から以下 の知見を得た.

地下構造物における平均的な中性化,塩害の予測に用いることができるパラメータを把握した.また,材料劣化の調査データは,ばらつきを持って広く分布していることを把握した.

表−5 地卜構造物0)半均的な補修問	F期と補修回数
------------	----------	----------------

	時の経年	植作回数 ^{*1*2}
中性化	136	0回
塩害	41	2回

※1 ひび割れ発生時に補修を行う場合

※2 施工継目や初期欠陥の影響は含まない

地下構造物における中性化について,地上構造物と比 較して進行速度がやや遅く,中性化深さは広く分布する とことが分かった.

地下構造物における塩害について、感潮河川付近において、その進行速度は干満帯と S2 地域における飛来塩分の中間となることが分かった.また、平均的な劣化速度を仮定した将来予測により、塩害箇所では繰返し補修が必要となる可能性が高いことを示した.

今後は材料劣化のばらつきを考慮した予測パラメータ の検討や将来予測手法の構築について、検討を行う予定 である.

参考文献

- 山本努,武藤義彦,小椋紀彦,葛目和宏,大即信明:地下鉄トンネルにおける塩害発生条件の検討, コンクリート構造物の補修,補強,アップグレード 論文報告集, Vol.11, pp.147, 2011.
- 藤田弘昭, 上原子晶久, 津村浩三, 石澤徹:青森県 日本海沿岸における RC 橋梁の塩害に関する調査, 土 木学会論文集 E, Vol.62, No.2, pp.330, 2006.
- 川村力,谷村幸裕,曽我部正道,鳥取誠一,長谷川 雅志,東川孝治:コンクリート構造物への塩化物イ オン浸透に関する調査研究,鉄道総研報告,Vol.18, No.1, pp.41, 2004.
- 4) 前田聡,武若耕司,山口明伸,好本健一:コンクリ ート中への塩化物浸透過程に関する既往調査の整理 と分析,コンクリート工学年次論文集, Vol.24, No.1, pp.795, 2002.
- 5) 牛田貴士,仲山貴司,津野究,焼田真司:鉄道開削ト ンネルの材料劣化に関する事例調査,第68回年次学術講 演会概要集, pp.565, 2013.
- 6) 鉄道総合技術研究所:鉄道構造物等維持管理標準・ 同解説(構造物編)コンクリート構造物,2007.
- 7) 浜田稔: コンクリートの中性化と鉄筋腐食, セメン ト・コンクリート, No.272, pp.2-18, 1969.
- 8) 鉄道総合技術研究所:鉄道構造物等設計標準・同解 説コンクリート構造物,2004.
- 9) 鉄道総合技術研究所:鉄道構造物等設計標準・同解 説開削トンネル,2001.