18.ニューラルネットワークを利用した 日本の小流域における流量特性マップの作製

新井 涼允 1,2* · 豊田 康嗣 1 · 風間 聡 2

¹正会員 (一財)電力中央研究所 サステナブルシステム研究本部 (〒270-1194 千葉県我孫子市我孫子 1646)

²正会員 東北大学 大学院工学研究科 (〒980-8579 宮城県仙台市青葉区荒巻字青葉6-6-06) * E-mail: *arai@criepi.denken.co.jp*

本研究は日本の小流域における流量特性マップを作製するために、ニューラルネットワーク(ANN)を利用した推定手法の構築と精度検証を実施した.ANNの出力値を年平均流出高(Q_{MEAN})と9種類の日流出高のパーセンタイルとし、入力値を気象、土地利用、地質、土壌および地形に関する176の流域特性指標とした.ANNの汎化性能はQ_{MEAN}においてR² = 0.74を示し、9種類の日流出高のパーセンタイルにおいてR² = 0.21~0.79の範囲を示した.本研究は日本の小流域を対象とした流量特性マップを作成し、それらは日本の降雨および降雪特性を反映していることを確認した.流量特性マップの結果に基づき、流れ込み式水力発電所の開発ポテンシャルを評価した結果、既設の水力発電所の位置や発電出力によく対応した.

Key Words : run-of-river hydropower, data-driven approach, cross validation

1. はじめに

我が国では 30,000 kW 未満の出力の水力発電に対して, 2012 年より固定価格買取制度が導入されたことから, 比較的小規模な流れ込み式水力発電の開発に注目が集ま っている.流れ込み式水力発電の開発には,発電出力や 維持流量を決定するために流況曲線が必須となる.しか しながら,流況曲線を観測に基づいて算定することは多 大なコストと時間を要する.

Beck ら¹と Barbarossa ら²はニューラルネットワーク (Artificial Neural Network: ANN)を利用して世界全域の流量 特性マップを作成した. これらの研究は, ANN の出力 値を流量観測データに基づく流量特性指標,入力値をそ の流域における気象や地形,土地利用等の流域特性指標 とし,世界全域の膨大な流量観測データを利用して ANN の学習を実施した. すなわち,この ANN を利用す ることで,流域特性指標から流量特性指標を推定するこ とができる.

本研究の目的は ANN を利用して日本の小流域(i.e., 10 km²)における流量特性マップを作成することである.まず、利水や治水の影響を受けていない流域における多数の流量観測地点を選定した.次に、選定された地点にお

ける流量特性指標と流域特性指標をそれぞれ整備した. 次に,流域特性指標から流量特性指標を推定するための ANNを構築し,その精度を検証した.次に,この ANN を利用して日本の最上流域における流量特性マップを作 成した.最後にケーススタディーとして,流れ込み式水 力発電所の開発ポテンシャルを評価した.

2. データセット

(1) 流量観測地点の選定

国土交通省が公開しているダム諸量データベース (http://mudam.nilim.go.jp)と水文水質データベース (http://www1.river.go.jp/)において、日流量が入手可能な流 量観測地点の中から、学習用の流量観測地点を選定した. 両データベースの公開状況と流域特性指標の整備状況を 考慮して、対象観測期間を 1981~2014 年までとした.ま た、本研究では利水や治水の影響を受けていない未開発 流域の流量推定を想定しているため、流量観測地点より 上流にダムがないことと、発電取水によって流量観測地 点が減水区間に該当しないことをダム年鑑³と国土地理 院地図(https://maps.gsi.go.jp/)を活用することで判断した. また、年間の日流量データが 10 日以上欠損している場 合はその年のデータを除外し、かつ残った流量観測期間 が5年未満の場合はその流量観測地点を除外した.以上 より、両データベースから計 419 地点を学習用の流量観 測地点として選定した.選定された流量観測地点の内訳 を表-1 にまとめた.

(2) 流量特性指標

本研究では年平均流出高(QMEAN)と,全観測期間を対象とした日流出高の超過確率に対応するパーセンタイル (Q1, Q5, Q10, Q20, Q20, Q20, Q25, Q20)を流量特性指標として 設定した.このパーセンタイルの数値は日流出高の超過 確率を意味しており,流況曲線の時間軸を観測期間長で 無次元化し,超過確率で表現することで算定した.例え ば,Q1は超過確率1パーセンタイルの日流出高のため, Q1~Q29の中で最も高い値となる.なお,融雪成分に起因 した年間水収支の不整合を防ぐため,流量特性指標を求 める際には,10月~9月を年間データとして取り扱った.

(3) 流域特性指標

本研究では気象、土地利用、地質・土壌および地形に 関する全 176 分類の指標を流域特性指標とした(表-2). 流域特性指標のデータソースや解像度については表-2の 通りである. これらのデータソースは GIS データである ため、ArcGIS 10.6 を用いて統合化し、HydroSHEDS⁴の流 下方向データと流積データを利用することで対象流域の 範囲において抽出した.また,標高と流域面積以外の流 域特性指標を求める場合,抽出した GIS データに対し必 要に応じた処理を施した後、それらの空間平均をとった. 降水量と積雪水量はそれぞれ1 mm/d以上を示した日デー タを対象とした. 降水量のデータソースは観測に基づく APHRO JP⁹である. 積雪水量のデータソースはメッシ ュ農業気象データ⁹であり、これは熱・放射収支を考慮 した積雪水量モデル%によって推定されている.本研究 では降水量と積雪水量の頻度を指標として設定したが, ここでの頻度は待ち時間分布の性質を持つ指数分布を参 考に、降水あるいは積雪イベントが次に発生するまでの 平均日数の逆数とした. 降水量および積雪水量の月変動 指数は、月平均値を12で除した年平均値で引き、それら を全月に亘って加算し、最後に年平均値で除した指標で ある¹⁾. なお、降水量と積雪水量に関わる指標は時間変 動性を考慮し、流量観測期間のタイミングに合わせて与 えることとした. 我が国には世界有数の豪雪地域が含ま れることから、Masudaら⁷は日本全域において風速を活 用した降雪捕捉損失の評価を実施した.本研究では Masudaら⁷のデータベースに基づき,降雪捕捉損失量を 流域特性指標の一つとして採用した. 乾燥度指数は年可

表-1 選定された流量観測地点の内訳.

能蒸発散量を年降水量で除すことによって求まるが、本研究で利用した年可能蒸発散量は過去30年間の年平均値とした⁸.よって、乾燥度指数を求める際の年降水量は、 国土数値情報(G02)より取得した過去30年間の年平均値を利用した.また、可能蒸発散量の月変動指数は、全球の可能蒸発散量データベース⁸の月平均値と年平均値を利用して、降水量月変動指数と同じ方法¹⁰で算定された.日本の地質・土壌と河川流況を評価した研究では、様々な地質・土壌の分類方法が用いられる⁹¹⁰¹¹⁾.そこで本研究では、地質・土壌の指標として、代表的な既往研究⁹¹⁰¹¹⁾の分類方法に従って与えた.

3. 方法

ANNの構築と検証

本研究では中間層を2層としたANNを構築した(図-1). 入力層では176の流域特性指標を受け取るため,ニュー ロン数は176とした.2層の中間層におけるニューロン 数はそれぞれ200とした.なお,ANNの構造等は試行 錯誤的に決定した.入力層では流域特性指標を受け取り, 出力層では流量特性指標を出力する.QMEANを出力する 場合には,出力層のニューロン数を1としてQMEANに対 応させた.日流出高のパーセンタイルを出力する場合, Q1からQ9%にかけて値が低下することが求められる.よって,その序列関係も含めて学習させるため,出力層の ニューロン数を9とし,Q1~Q9%に各ニューロンを対応さ せた.学習方法の詳細についての記述は割愛するが,過 学習の防止や効率的な学習のため,入力値の標準化,誤 差関数に対するL2 正則化の適用,ドロップアウトの実 装を施した.

ANNの検証は, Leave-One-Out (LOO)交差検証によって

	流域特性指標	分類数	単位	データソース	時間変動	解像度
気象	年降水量		mm/y	APHRO_JP ⁵⁾	+	180s
	年平均日降水量		mm/d	APHRO_JP ⁵⁾	+	180s
	年平均日降水頻度		1/d	APHRO_JP ⁵⁾	+	180s
	年平均日最大降水量		mm/d	APHRO_JP ⁵⁾	+	180s
	降水量季節変動指数		-	APHRO_JP ⁵⁾	+	180s
	降雪捕捉損失補正量		mm/y	APHRO_JP V18017)		180s
	年積雪水量		mm/y	メッシュ農業気象データの	+	~1km
	年平均日積雪水量		mm/d	メッシュ農業気象データの	+	~1km
	年平均日積雪頻度		1/d	メッシュ農業気象データの	+	~1km
	年積雪水量季節変動指数			メッシュ農業気象データの	+	~1km
	年可能蒸発散量		mm/y	CGIAR-CSI ⁸		~1km
	可能蒸発散量季節変動指数		-	CGIAR-CSI ⁸		~1km
	乾燥度指数		-	CGIAR-CSI [®] と国土数値情報(G02)		~1km
	平均気温		°C	国土数值情報(G02)		~lkm
	最高気温		°C	国土数值情報(G02)		~lkm
	最低気温		°C	国土数值情報(G02)		~lkm
	全天日射量		MJ/m ²	国土数值情報(G02)		~lkm
	日照時間		h	国土数值情報(G02)		~1km
土地利用	国土数値情報の土地利用区分	11	%	国土数值情報(L03-b_r)		~100m
地質 と 土壌	国土数値情報の分類	79	%	国土数值情報(G05_004)		~1km
	表層地質の大分類	7	%	国土数值情報(G05_003)		~1km
	地質年代による分類	6	%	国土数值情報(G05_003)		~1km
	虫明ら(1981)による分類	7	%	国土数值情報(G05_003)		~1km
	Yokoo ら(2001)の分類	3	%	国土数值情報(G05_004)		~1km
地形	国土数値情報の分類	40	%	国土数值情報(G05_002)		~1km
	最高標高		m	HydroSHEDS ⁴⁾		15s
	最低標高		m	HydroSHEDS ⁴⁾		15s
	流域面積		km ²	HydroSHEDS ⁴⁾		15s

表-2 流域特性指標.

実施した.本研究における LOO 交差検証では、1 つの 流域をテストデータとし、その他の流域(i.e., 418 流域)を 訓練データとして ANN をトレーニングした.次に訓練 済みの ANN を利用してテストデータを推定した.全て の流域がテストデータに含まれるようこの操作を繰り返 した.最終的に、テストデータの予測値と真値に対する 決定係数(\mathbf{R}^2)を算定した.この \mathbf{R}^2 は ANN の汎化性能を 表す.

(3) 流量特性マップの作製

流域面積が 10 km²となる流域を標高データ %に基づき 探索した結果,日本全域において 8,901 流域を特定した. 次に,8,901 流域における流域特性指標を抽出した.こ れらをトレーニング済みの ANN に入力することにより, 流量特性を出力した.なお,流域特性指標において時間 変動する指標については,その期間を 2001~2010 年の 10 年間に設定し,与えることとした.

(4) 流れ込み式水力発電所の開発ポテンシャル評価

水力発電の発電電力量は流量と落差によって決定する. 特に,流れ込み式水力発電所における発電に要する水量 (i.e.,発電使用水量)は流況曲線を用いて算定される¹⁹ (図- 2). 図-2 に示したように,発電使用水量は設計取水量以下の水量となる.高い設計取水量を採用すれば発電使用水量も必然的に高くなるが,発電機や水圧鉄管等のコストも同様に高くなる.よって,流れ込み式水力発電所の経済的な開発地点は,低水量が豊富な地点であると言える.よって,本研究では流れ込み式水力発電所の開発ポテンシャル指標 HPを以下の式によって定義した.

$$HP_{i} = \frac{1}{6} \left(\frac{QMEAN_{i}}{QMEAN} + \frac{Q50_{i}}{Q50} + \frac{Q80_{i}}{Q80} + \frac{Q90_{i}}{Q90} + \frac{Q95_{i}}{Q95} + \frac{Q99_{i}}{Q99} \right) \cdot \left(\frac{H_{i}}{H} \right)$$
(1)

ここで,*i*は対象流域,上線は 8,901 流域の流域平均値, *H*は総落差を表す.なお,*H*は対象流域の周囲 1 km の 範囲において,対象流域最下流点との標高差が最大にな る値を設定した.

4. 結果と考察

(1) ANN の推定精度と流量特性マップ

ANN の汎化性能は、 Q_{MEAN} において良好であり($R^2 = 0.74$)、日流出高のパーセンタイルにおいて高い変動性を

示したとともに(R² = 0.21~0.79),低水側の流量特性指標 に対して不良となる傾向を示した(図-3). 我が国の低水 側の流況は地質に大きく影響を受けることが報告される 910. しかしながら、これらの研究は雪の影響が小さい 流域を対象としていた.一方で、本研究では学習に利用 する流量観測地点を日本全域とした.よって、積雪地域 における低水側の流況は地質と融雪の影響を受けていた と推測され、推定が困難な状況にあったと考えられる. Beck ら¹は、全球の 4,079 の流量観測データを利用して、 ANN の交差検証を実施した結果,例えば QMEAN におい て R²=0.88, Q₉において R²=0.66の汎化性能を報告した. 加えて、Beckら¹は全球流量特性マップのGISデータを 公開している. そこで、Beckら¹の流量特性マップを本 研究の流量観測データで検証した(図-3). 本研究と Beck ら¹の ANN の汎化性能を比較すると、全ての流量特性 指標において本研究の方が良好な汎化性能を示した(図-3). 日本における Beck ら¹の汎化性能は、QMEAN におい て R²=0.47, Q₉₉において R²=0.16 を示し、日本における 流況推定の難しさが露呈した.この理由の一つとして, 雨量計における降雪捕捉損失の影響が考えられる.一般 的に, 降雪粒子は風の影響で雨量計に捕捉されにくいた め、降雪量は過小評価される 7. しかし、日本は東北・ 北陸地方の日本海沿岸部など、世界有数の豪雪地域を有 する. すなわち, 降雪捕捉損失に起因した観測降雪量の 大きな誤差によって、日本は流況推定が困難な状況にあ ると考えられる.

QMEANおよび Q1の流量特性マップを図4 にそれぞれ示 した. なお,その他の日流出高のパーセンタイルについ ては QMEAN の分布傾向と類似したため,割愛した. QMEAN は北陸・東北地方の日本海側の豪雪地域において 最も高く,続いて九州地方南部および四国・近畿地方の 太平洋側の台風常襲地域において高くなる傾向を示した. Q1 は台風常襲地域において最も高く,豪雨による出水 の影響が反映された結果となった.

(2) 流れ込み式水力発電所の開発ポテンシャル

HP は日本アルプス周辺において最も高い値となった (図-5). 必ずしも QMEANの分布傾向に類似しておらず, H の影響が示唆された.また,既存の水力発電所の位置を 水力発電所データベース(https://www.jepoc.or.jp/hydro/)より 取得し,図-6 に示した.その結果,既存の水力発電所 は高い HP を示す地域によく対応した.HP の妥当性を 定量的に評価するため,1 級水系ごとに得られる HP の 平均値と既設水力発電所の単位面積当たりの発電出力の 関係を図-7 に示した.その結果,両者に正の有意な相 関関係($R^2 = 0.67$, p < 0.01)が確認された.以上より,本研 究の HP は定量的に妥当な値であると言える.

5. まとめ

本研究は日本の 419 流域における流量観測データを利 用して,流域特性指標から流量特性指標を推定する ANN を構築した. ANN の汎化性能は QMEAN において良 好であり($R^2=0.74$),日流出高のパーセンタイルにおいて 高い変動性を示した($R^2=0.21-0.78$).本研究と Beck ら¹⁾ の ANN の汎化性能を比較すると、本研究の方が良好な 汎化性能を示した.流量特性マップは日本の降雨・降雪 特性を反映していることを確認した.最終的に,流れ込 み式水力発電所の開発ポテンシャルを評価し,定量的に 妥当な値であることを確認した.

参考文献

- Beck, H. E., de Roo, A. and van Dijk, A. I. J. M.: Global maps of streamflow characteristics based on observations from several thousand catchments, *J. Hydrometeorol.*, Vol.16, pp.1478-1501, 2015.
- Barbarossa, V., Huijbregts, M. A. J., Beusen, A. H. W., Beck, H. E., King, H. and Schipper, A. M.: FLO1K, global maps of mean, maximum and minimum annual streamflow at 1 km resolution from 1960 through 2015, *Sci. Data*, Vol.5, 180052, 2018.

図-4 流量特性マップ. (a) QMEAN, (b) Q1.

- 3) (財)日本ダム協会:ダム年鑑 2012, 2012.
- Lehner, B., Verdin, K. and Jarvis, A.: New global hydrograhy derived from space borne elevation data, *Eos*, *Transactions American Geophysical Union*, Vol.89(10), pp.93-94, 2008.
- 5) Kamiguchi, K., Arakawa, O., Kitoh, A., Yatagai, A., Hamada, A. and Yasutomi, N.: Development of APHRO_JP, the first Japanese high-resolution daily precipitation product for more than 100 years, *Hydrolo. Res. Lett.*, Vol.4: pp.60-64. 2010.
- 小南靖弘,広田知良,井上聡,大野宏之:メッシュ 農業気象データのための積雪水量推定モデル,雪氷, Vol.77(3), pp.233-246, 2015.
- Masuda, M., A. Yatagai, K. Kamiguchi and K. Tanaka: Daily adjustment for wind-induced precipitation undercatch of daily gridded precipitation in Japan, *Earth* and Space Sciences, Vol. 6(8), pp. 1469-1479, 2019.
- Zomer, R. J., Bossio, D. A., Trabucco, A., Yuanjie, L., Gupta, D. C. and Singh, V. P.: Tree sand water: small

図-5 流れ込み式水力発電所の開発ポテンシャル指標 HP.

図-6 既設水力発電所の分布図

図-7 1級水系ごとに得られる HP の平均値と既設水力発電所の単 位面積当たりの発電出力の関係.

holder agroforestry of irrigated lands in northern India, *Colombo, SriLanka: International Water Management Institute*, Vol.45, 2007.

- 6) 横尾善之,沖大幹:流域の気候・地形・土壌・地 質・土地利用が河川の流況に与える影響,水工学論 文集, Vol.54, pp.461-474, 2010.
- 10) 虫明功臣,高橋裕,安藤義久:日本の山地河川の流 況に及ぼす流域の地質の効果,土木学会論文報告集, Vol.309, pp.51-62, 1981.
- Yokoo, Y., Kazama, S., Sawamoto, M. and Nishimura, H.: Regionalization of lumped water balance model parameters based on multiple regression, *J. Hydrol.*, Vol.246, pp.209-222, 2001.
- 12) 豊田康嗣,佐藤隆宏,石井孝,新井涼允:渓流河川 における流出解析モデルを用いた小水力発電の発電 単価評価,土木学会論文集 G(環境), Vol. 71(5), pp.I_247-I_255, 2015.