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Droughts are widespread disasters and are concurrently influenced by multiple large-scale climate signals. 
Regional heterogeneity poses challenges for drought prediction and management. Teleconnection analysis between 
climate signals and the principal components of the classified drought regimes provides a method for overcoming this 
difficulty. This study took Japan with diverse ecosystems and drought characteristics as the research area.  

As a result, nine natural clusters were identified based on cluster analysis. Then, how climatic drivers affect these 
nine drought regimes were discussed using wavelet analysis. The most influential climatic drivers varied with the 
drought regimes due to different drought spatiotemporal characteristics.  
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1.  Introducion 
 

Drought is recognized as the most complex and impenetrable 
extreme natural disaster1). Additionally, considering the probability 
distribution, duration, and seasonality of drought, drought can have 
various characteristics in different drought regimes2). These 
spatiotemporal characteristics and multiple causes of drought have led 
to the heterogeneity of drought in different climate zones or even in 
the same geographic location.  

Japan, as a heterogeneous region with diverse ecosystems and 
drought characteristics, is a unique research area for exploring 
homogeneous drought regimes. Seventy percent of Japan is covered 
by mountains, and the rain flows quickly to the ocean after falling, 
leading to unique drought characteristics in Japan. For different 
drought regimes, the relationship between climate and drought varies 
from region to region, which is forced by land-sea-atmosphere 
interactions3). Defining different homogeneous drought regimes could 
provide a reference to managers regarding which strategies may be 
most effective for drought risk reduction. 

How to describe the long-term variation inherent in drought 
regimes in a given region and connect with climatic drivers, is a 
crucial issue in understanding and predicting regional drought. First, 
this study attempted to provide an approach for defining drought 
regimes in Japan and then evaluated how large-scale climate signals 

affect these drought regimes. Second, identifying the dominant 
climate signals of different drought regimes contributes to the 
understanding of climatic causes of drought over Japan. This 
approach could also improve drought prediction by accounting for 
the influence of large-scale climate signals. 
 
2.  Materials and Methodology 
 

(1) Study area 
The study area comprises all of Japan, which is a heterogeneous 

region mostly characterized by steep mountainous terrain. The 
heterogeneity of the climate in Japan is mainly determined by the 
monsoon, mountains, ocean circulations and climatic zones. 

Changeable climate and complex topography pose challenges to 
the identification of homogeneous drought regimes in Japan. 
 
(2) Describing drought 

The soil moisture data used in this study are derived from 
simulations using the Simple Biosphere including Urban Canopy 
(SiBUC) developed by Tanaka4). This model has been utilized not 
only for regional-scale analysis but also for global-scale analysis，
such as Turkey5), Japan6) and Southeast Asia7). Notably, the soil 
moisture simulated by SiBUC is the saturation ratio. After obtaining 
the daily soil moisture, the monthly minimum soil moisture was 
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extracted to show the driest situation every month. 
For SiBUC forcing data, the precipitation data were taken from the 

Asian Precipitation Highly Resolved Observational Data_Japan 
(APHRO_JP)8-10) gridded dataset. Other meteorological forcing data 
with high resolution (5 km × 5 km) come from the Dynamical 
Regional Downscaling Japanese 55-year Reanalysis (DSJRA-55) 
dataset11). Land use and land type data come from the Global Land 
Cover Characterization12) and Ministry of Land, Infrastructure, 
Transport and Tourism, Japan. Soil parameters come from 
ECOCLIMAP13).  

 
(3) Large-scale climate signals 
 Four large-scale climate signals (Arctic Oscillation, North 

Atlantic Oscillation, El Niño-Southern Oscillation, Pacific Decadal 
Oscillation) were chosen to analyze the teleconnections between the 
large-scale climate signals and drought in Japan14-17). All large-scale 
climate signals data sources come from the internet and are freely 
available. 

 
(4) Comprehensive approach 
 This study provides a comprehensive approach to define 

drought regimes and connect with climatic drivers. Firstly, the 
drought regimes is obtained by cluster analysis. Then principal 
component analysis is carried out to obtain the first principal 
component of each drought regime. Finally, by inputting the first 
principal component of each drought regime and climatic drivers, 
teleconnection analysis is performed to quantify the climatic causes. 

For cluster analysis, a comprehensive dataset with the probability 
distribution, duration, and seasonality of drought based on monthly 
minimum soil moisture and the distance between regions was 
assembled. The specific information of each variable is described in 
Table-1. The expectation-maximization (EM) algorithm18-19) was 
adopted in this study, which was an unsupervised clustering approach 
that discovers the underlying structure of the data without 
preconceived labels or definitions.  

After obtaining the cluster analysis results, the distinct empirical 
orthogonal function (DEOF) decomposition20) was used to identify 
the principal components of homogeneous drought regimes, 
preparing for analyzing teleconnections with large-scale climate 
signals. Among each drought regimes, DEOF decomposition was 
apply to a gridded space-time matrix of soil moisture, which can 
decompose the space-time matrix into the distinct spatial function part 
(DEOFs) and the temporal function part (distinct principal 
components, DPCs).  

Through the DEOF decomposition in each drought regimes, the 
most dominant DPCs were extracted in each regimes. Then wavelet 

analysis was used for exploring the teleconnection between large-
scale climate signals and the most dominant DPCs in each drought 
regimes. To measure the extent of climatic influence on wildfire 
burned area anomalies, the percent area of significant coherence 
(PASC) relative to the wavelet scale-location domain was adopted21). 
The global wavelet coherence coefficient22) was defined to evaluate 
the coherence between two time series at different scales while 
neglecting the influence of time. The PASC is used to identify the 
most significant coherent variable, and the global wavelet coherence 
coefficient is used to quantitatively judge the level of coherence.  

 
Table-1 Variables used in the clustering of drought regimes in Japan. 

 
Category Data type 

Probability 
distribution 

Average soil moisture 
Coefficient of variation (CV) 
Coefficient of skewness (CS) 

Duration Length of drought period 
Return period of drought 

Seasonality Average soil moisture in spring 
Average soil moisture in summer 
Average soil moisture in autumn 
Average soil moisture in winter 

Distance Latitude 
Longitude 

 

3.  Results and Discussions 
 

(1)  Defining drought regimes 
Nine drought regimes with different characteristics were defined 

and quantified using unsupervised cluster analysis at a 5 km 
resolution across Japan, as shown in Figure-1. Among the nine 
drought regimes, regime-1 was dominated by extreme drought events 
and included the mesh with the largest length of drought period, the 
largest return period of drought, and the largest coefficient of variation. 
Drought regime-2 and regime-6 were typical representatives of spring 
droughts, and regime--6 was the region with the lowest average soil 
moisture. Under the influence of the Ou Mountains, the Tohoku 
region of Japan was divided into two parts: drought regime-3 and 
regime-5. The Hokkaido region, where summer droughts often occur, 
was divided into wetter drought regime-4 and drier drought regime-9. 
There was the longest left tail in the probability distribution curve of 
soil moisture in regime-7 among the nine drought regimes, indicating 
that this regime was wet for most of the period. Drought regime-8 is 
covered by high mountains and often experiences weak drought 
events with a short drought period and return period of drought. 
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Figure-1 Spatial distribution of drought regimes across Japan. 
 
(2)Teleconnections between drought regimes and climatic drivers 

To analyze the impact of large-scale climate signals on these nine 
drought regimes, DEOF was first adopted to reduce multiple time 
series in each drought regimes into one principal component. The first 
DPC time series of the nine drought regimess are shown in Figure-2. 
The larger the explained variance is, the greater the degree of DPC 
representing the drought regimes. The explained variance in the DPC 
reached more than 60% in all nine drought regimes, except for 
regime-1. The high explained variance indicated the high level of 
homogeneity within each clustered regime, especially regime-3 and 
regime-5, where the explained variance even reached more than 80%. 
The distribution of regime-1 spanned all of Japan, and regime-1 often 
experienced extreme droughts with long recurrence periods, so it was 
difficult to find a significant principal component to represent this 
regime. Except for regime-4 and regime-9, which were mainly 
distributed in Hokkaido, the 1994 drought that covered almost all 
Japan was detected in other drought regimes. In this study, 1994 is 
considered to be the driest year since 1958, which is consistent with 
the study by Lee et al.23). For regime-4 and regime-9, 1985 was 
detected as the driest year.  

Figure-3 shows the global coherence coefficients, providing an 
evaluation of average coherence between drought regimes and four 
large-scale climate signals over different timescales. By plotting all 
large-scale climate signals together, it became possible to compare the 
relative coherence significance of each climate signal in each drought 
regimes at all time scales. Except for regime-8 and regime-9, all other 
regions had high global coherence coefficients with the NAO on the 
10-year scale. The impact of ENSO on the 15-year scale was mainly 
reflected in regime-1, regime-2, regime-5, and regime-6. The global 
coherence coefficients between regime-1, regime-3, regime-6, and 
regime-8 and the AO showed a continuously increasing trend on the 
scale of decades, while the coherence between other drought regimes 
and the AO had already reached the maximum values on the scale of 

approximately 10 or 15 years. Similar to the AO, the maximum 
values of the global coherence coefficients between the PDO and 
regime-1, regime-2, and regime-6 had been reached, but those 
between the PDO and regime-3, regime-4 and regime-9 were still 
increasing on the scale of decades. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure-2 First distinct principal component (DPC) of nine drought 
rigimes. The explained variance in distinct principal component-1 in 
drought regimes is at the bottom right of the figures. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure-3 The global coherence coefficients between large-scale 
climate signals and distinct principal component-1 (DPC1) of nine 
drought regimes. 
 
4.  Summary and Conclusions 
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This paper establishes the teleconnections between large-scale 
climate signals and drought regimes across Japan for the first time and 
explores the physical mechanism behind clustering. The results of this 
paper are conducive to a better understanding of the homogeneity in 
the temporo-spatial characteristics of drought across Japan. Due to the 
changing climatic, atmospheric and oceanic scenarios, focusing on 
global climate drivers provides an efficient and promising reference 
for predicting drought. The conclusions will also be valuable for 
drought management and drought prevention. 
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