時間周波数解析を用いた地域気候モデル 日降水量のバイアス補正と 種々のバイアス補正手法との比較

井芹慶彦¹・鼎信次郎¹ Yoshihiko ISERI and Shinjiro KANAE

¹東京工業大学 環境・社会理工学院 (〒152-8552 東京都目黒区大岡山2-12-1-M1-6)

本研究では、離散ウェーブレット解析を用いた気候モデル日降水量出力のバイアス補正手法 を提案した.また、提案した手法と既存の複数のバイアス補正手法を、三つの地域気候モデル の日降水量に適用し、得られた降水量プロダクトを比較した.その結果、分散と持続した大雨 の将来値は、バイアス補正と地域気候モデルによって大きく異なり得る可能性が示された.ま た、本研究で提案したバイアス補正手法は、持続する大雨に対して比較的優れた補正能力を有 することが分かった.また、バイアス補正を行う事で夏季平均降水量の空間分布は改善される 一方、9通りの降水量空間分布パターン毎の発生日数は、地域気候モデルや用いたバイアス補正 手法によって異なる傾向があった.

Key Words : statistical downscaling, statistical bias correction, heavy rainfall spatial distribution, discrete wavelet transform

1. はじめに

地球温暖化が引き起こしうる問題の1つとして、水循 環の変化が指摘されている.水循環の変化は洪水や渇水 の発生の変化といった形で社会に大きな影響を及ぼし得 る. 将来の陸上の水循環変化を予測するための有効な手 段として,気候モデルが予測した将来の降水量や気温な どを,河川の流量や土壌の水分などを計算できる影響評 価モデル(陸面モデルや水文モデル)へ入力するという 方法がある.しかし、国内の流域や自治体などを対象と するには、気候モデルの出力は時間・空間解像度が必ず しも十分とはいえず、また、全球気候モデルの出力のみ ならず、地域気候モデルの出力も時間・空間解像度が必 ずしも十分とはいえないことがある. そのため, 気候モ デル出力の時間・空間解像度を統計的手法によって細か くする技法(統計的ダウンスケーリング)が影響評価を 行う際にはしばしば用いられる (Fowler et al., 2007¹⁾; 飯 泉ら,2010²⁾).このとき,統計的ダウンスケーリング の一部として、バイアス補正とよばれる技法が使われる ことが多くある (Ines and Hansen, 2006³⁾; Piani et al.,

2010⁴; Terink et al., 2010⁵; 渋尾・鼎, 2010⁶) . バイアス 補正は,気候モデルから出力される将来変化の情報を影 響評価モデルへと入力する際に,対象地域における気候 モデルの出力と観測データとの間にある系統的な差を埋 める統計的技法である.

日降水量の極値は河川計画の計画規模の策定などにも 利用されるため、水文分野で将来の降水量シナリオが利 用される場合には、日単位で降水量のバイアスが補正さ れる事の意義は大きい、そこで本研究の目的としてまず、 異なるバイアス補正手法を地域気候モデル出力の日降水 量に適用し、バイアス補正が影響評価に用いる降水量に 与える影響を明らかにし、バイアス補正方法に由来する 水災害影響評価の不確実性を低減することがある.

また、大雨の持続特性は土砂災害などの水災害の発生 と関係があるため、大雨の時間的な変動特性の再現性が ある程度保証された降水量データを用いることは、水災 害影響評価を行う上で重要である.しかし、既存のバイ アス補正手法の多くは、モデル出力の時間的な変動特性 については補正されない.即ち、既存のバイアス補正手 法は、モデル出力時系列の時間的な変動特性を補正する ことを本来の目的としたものではない.しかし、例えば 少雨や大雨の持続性は、渇水災害や豪雨災害の発生にも 関連し得るので、水文分野の影響評価研究を行う上では、 降水量時系列の時間的変動のバイアスは除去されること が望ましいと言える.また、Haerter et al. (2010) ⁷は、 気候モデル出力の異なる時間スケール変動を補正するこ との重要性について議論している.即ち、時間的な変動 特性についてもある程度補正された将来シナリオを利用 することも、水災害評価を行う上では重要であると言える.

一方,観測された降水量の時間的な変動特性については, これまで様々な研究が行われており,時間的に局在化し た変動特性を解析する有効な解析手法として,ウェーブ レット解析がしばしば用いられている(Kumar, 1997)⁸. それらの研究では,対象とした降水量時系列中で,どの 時間スケールの変動が卓越するかといった点について ウェーブレット解析を用いて評価がなされている.この ように,ウェーブレット解析は降水量の時間的変動特性 の抽出に有効であると考えられる.また,Johnson et al.

(2011)⁹はGCM (General Circulation Models)の海面水 温に対してウェーブレット解析を適用し、年々またはそ れ以上の時間スケールを持つ変動の再現性を評価してい る.

そこで本研究では、変動の時間スケールに着目したバ イアス補正を行う手段として、離散ウェーブレット解析 を用いた日降水量のバイアス補正手法を提案して日本域 の地域気候モデル出力日降水量に適用し、他のバイアス 補正手法で得られた降水量データとその性質を比較する.

即ち本研究では、水災害の影響評価に強く関わる、気 候モデルの降水量出力に特に着目し、各種バイアス補正 手法の比較や新たな手法の提案などを行う.更に、バイ アス補正された日降水量の空間分布を、パターン認識手 法を利用して評価した.

本論文の構成は以下である.第2章では本研究で用い た既存のバイアス補正手法と、本研究で提案する離散 ウェーブレット解析を用いたバイアス補正手法の概要を 説明する.また、バイアス補正の対象とした地域気候モ デルおよび、それらモデルの日降水量へのバイアス補正 手法の適用方法についても述べる.第3章では、本研究 で3つの地域気候モデルに対して4通りのバイアス補正を 適用して作成した計12通りの降水量プロダクトを比較し た結果を示す.第4章はまとめとした.

2. 研究方法

将来予測に不確実性を生じさせる要因は複数あるが, バイアス補正手法の選択のみならず,将来予測に用いる 気候モデルの選択も気候予測に不確実性をもたらしうる. そこで本研究では,3つの地域気候モデル(気象研究所 NHRCM¹⁰⁾,防災科学研究所RAMS¹¹⁾,筑波大学 WRF¹²⁾)に,提案する補正手法を含む種々のバイアス補 正手法を適用することで,マルチ地域気候モデル×複数 バイアス補正手法の計算を行い,得られた降水量プロダ クトの性質を比較する.具体的には平均や分散といった 基本統計量,持続した大雨に着目して,異なる地域気候 モデルに対して行った複数のバイアス補正手法が,これ らの諸量に与える影響を比較する.これにより,地域気 候モデルとバイアス補正手法に起因する不確実性を見積 もり、水災害影響評価を行う際の判断材料となり得る情 報を提供する.

また,得られた日降水量プロダクトに対してパターン 認識手法を適用し,用いた気候モデルや適用したバイア ス補正手法が,降水量プロダクトの日降水量の空間分布 の再現性に与える影響を評価する.

(1)既存のバイアス補正手法

本研究では、既存研究で見られる3つのバイアス補正 手法に加え、本研究で提案する離散ウェーブレット (Discrete Wavelet Transform: DWT) を利用したバイアス 補正手法 (DWT手法) を3つの地域気候モデルに適用し た.

本研究で比較対象とする3つの既存のバイアス補正手 法としては、地域気候モデルと観測値の月平均降水量の 比を用いる方法、気候モデル出力と観測値の累積分布関 数を用いてバイアス補正を行う方法(CDF手法: Cumulative Distribution Function; 例 え ば Ines and Hansen,2006やPiani et al.,2009), 日降水量に対して各日 毎に補正係数を定める方法 (Daily Scaling手法; Kiem et al.¹³⁾, 2008; 渋尾・鼎, 2010) を用いた. 月平均降水量の 比を用いた方法は、基準期間におけるモデル出力と観測 値の各月毎の月平均降水量の比を計算する. その比を対 応する月の日降水量にかけることで、モデル出力の月平 均値が観測の月平均値と一致するように補正される.累 積分布関数 (CDF) を用いる方法では、モデル出力の確 率分布が観測値の確率分布へと置き換えられる. CDF手 法では、CDFとして経験分布関数を用いる場合と理論分 布に当てはめる場合があるが、理論分布に当てはめる場 合は分布のパラメータの推定方法などについて不確実性 が生じる. そこで本研究では、CDF手法については経験 分布関数を用いる方法を採用している.本研究で用いた 各日降水量毎に係数を定める方法 (Daily scaling手法) ではまず、基準期間における観測日データとモデル日 データをそれぞれ降順に並べ、同順位の日データの比を 求めることで、各日毎のスケーリング係数を定めた. そ のスケーリング係数を、降順に並べたバイアス補正対象 期間の対応する順位の日降水量にかけることで補正され た日降水量を得た.

(2)離散ウェーブレット変換を用いたバイアス補正

ここでは、本研究で提案する離散ウェーブレット変換 (DWT; Discrete Wavelet Transform)を利用したバイアス 補正手法を説明する(以降単に、DWT手法と呼ぶ). DWT手法では、モデル出力の日降水量時系列(実際は 他の変数でもよい)の各時間スケール毎の変動エネル ギーが、観測値の対応する時間スケールの変動エネル ギーと一致するように補正を行う.この方法ではまず、 現在気候(バイアス補正の基準期間)におけるモデル出 カ時系列と観測時系列それぞれに対して、レベル*j*の離 散ウェーブレット展開を行う.そして、モデル出力時系 列と観測時系列の展開係数それぞれに対して、各スケー ル毎のエネルギーを計算し、その比をバイアス補正の係 数とみなしてバイアス補正を行う.具体的には、以下の 手順で補正を行う.

まず,解析対象の時系列をx,サンプル数をNとして, xを離散ウェーブレット変換すると以下の展開係数が得られる.

$$x = P_J(u) + \sum_{j=1}^{J} Q_j(u)$$
(1)

$$P_{j}(x) = \sum_{k=0}^{N/2^{j}-1} \langle u, \varphi_{j,k} \rangle \varphi_{j,k}$$
(2)

$$Q_{j}(x) = \sum_{k=0}^{N/2^{j}-1} \langle u, \psi_{j,k} \rangle \psi_{j,k}$$
(3)

Pは近似係数(Approximation coefficient), Qは詳細係数

(Detail coefficient) とよばれる. *j*はウェーブレット変換 する際の分解のレベルであり, φ_{jk} はレベル*j*のスケーリ ングベクトル, ψ_{jk} はレベル*j*のウェーブレットベクトル である.次に,モデル出力時系列と観測時系列の展開係 数それぞれに対して,各スケール毎のエネルギーを計算 する.変動の各時間スケール別のエネルギーは,以下の 式で計算することができる.

$$\|x\|^{2} = \|P_{J}(x)\|^{2} + \sum_{j=1}^{J} \|Q_{j}(x)\|^{2}$$
(4)

 $\|x\|^2$ は元の時系列の持つエネルギーであり、上の式は 元の時系列のエネルギーは展開係数 $P_{i}(x)$ と

 $Q_i(x), (j = 1, 2, \dots, J)$ の二乗和として求められること

を表している.この時,スケールjの展開係数に対する 補正係数を以下のように定める.

$$\alpha_{j} = \frac{\left\| Q_{j}^{\text{observatio n}} \right\|^{2}}{\left\| Q_{j}^{\text{modeloutpu t}} \right\|^{2}} = \frac{E_{j}^{\text{observatio n}}}{E_{j}^{\text{modeloutpu t}}}, j = 1, 2, \cdots, J$$
(5)

$$\alpha_{0} = \frac{\left\| P_{J}^{\text{observatio n}} \right\|^{2}}{\left\| P_{J}^{\text{modeloutpu t}} \right\|^{2}} = \frac{E_{0}^{\text{observatio n}}}{E_{0}^{\text{modeloutpu t}}}$$
(6)

なお $E_j^{\text{modelutpu} t}$, $E_j^{\text{observatio n}}$ (j = 1, 2, ..., J)は, それぞれ モデル出力および観測値のレベルjにおける詳細係数成 分の変動エネルギーであり, $E_0^{\text{modeloutpu t}}$, $E_0^{\text{observatio n}}$ は近似成分の変動エネルギーである.

次に、将来気候のモデル出力に対して、上記と同様に レベルJの離散ウェーブレット変換を適用し、各時間ス ケール別の展開係数を得る.基準期間で得た各スケール 別のエネルギー補正係数を、得られた展開係数に対して 乗じることで、モデル出力の各スケール毎の変動エネル ギーが観測時系列に近づくように、以下のように補正す る.

$$\begin{cases} Q_{j}^{corrected} = \sqrt{\alpha_{j}} \cdot Q_{j}^{\text{modeloutpu t}}, \ j = 1, 2, \cdots, J \\ P_{j}^{corrected} = \sqrt{\alpha_{0}} \cdot P_{J}^{\text{modeloutpu t}} \end{cases}$$
(7)

上記のようにして各スケール毎のエネルギー補正が行われた結果に対して逆離散ウェーブレット変換することで、 バイアス補正された将来期間の時系列を得る. なお、逆 変換した降水量が負の数となった場合は、0に繰り上げる. なお本研究では、マザーウェーブレットとしては Coifletを用い、分解のレベルjの最大値は5とした.

(3) 用いた地域気候モデルとデータ

バイアス補正対象の地域気候モデルとして、気象研究 所NHRCM(Non-Hydrostatic Regional Climate Model)¹⁰, 防災科学技術研究所RAMS(Regional Atmospheric Modeling System)¹¹⁾,筑波大学WRF(Weather Research and Forecasting System)¹²⁾の3つの気候モデルを用いた. これら地域気候モデルの水平解像度は水平20km²であり, 鉛直層数は各モデル順に、40層、27層、31層である.こ れら地域気候モデルの時間降水量出力からまず、各モデ ルの日降水量データを作成した.なお、地域気候モデル の出力領域は日本とその周辺を覆っており、それらモデ ル出力の1981-2000年、2081-2100年をバイアス補正の対 象期間とした.なお将来期間の排出シナリオには、 NHRCMとWRFはRCP4.5、RAMSはA1Bを用いた.

バイアス補正に用いる観測日降水量データとして、日本域高解像度日降水量グリッドデータ (APHRO-JP)¹⁵⁾を用いた. APHRO-JPは0.05度×0.05度格子で日本全域を 覆っており、解析には1981-2000年のデータを用いた. なお、APHRO-JPの格子点と3つの気候モデルの格子点は異なる. したがって、マルチ気候モデルのバイアス補 正を行う際には、NHRCM出力とAPHRO-JPの格子点が 一致するように、APHRO-JPの0.05°×0.05°格子上に対し てその格子点の周辺4点のNHRCM日降水量出力を逆距 離荷重法で空間内挿して、0.05°×0.05°格子点上の NHRCM出力データを作成した. 同様のデータ処理を RAMS、WRFの日降水量に対しても行い、3つの各RCM 毎に0.05°×0.05°格子の日降水量データを作成した. なお 本研究は、6月から8月までを夏季として解析を行う.

(3) バイアス補正手法の適用

バイアス補正の基準期間は、NHRCMおよびAPHRO-

JPがともにデータの存在する1981-2000年とし、バイア ス補正の期間の違いに起因する補正結果の誤差を避ける ため、バイアス補正の評価期間も同じく1981-2000年と した. このように補正期間を定めることで、バイアス補 正結果の違いは、手法の相違にのみ起因するものとして 解釈でき、提案するバイアス補正手法の特性をより明確 に検証できる.また、将来気候としては2081-2100年を 対象とした.気候モデル出力のバイアス補正は、気候変 動影響評価のために、しばしば将来気候に対して適用さ れる. そのように将来気候に対してバイアス補正を行っ た場合に、提案手法と他の補正手法とで補正プロダクト にどのような相違が生じうるかを検討するため、本研究 では将来期間も補正結果の比較対象とした. なお,気候 変動の影響評価を行う際には、現在から将来にかけて対 象とする変数(または指数)がどの位変化したか、とい う事が重要な情報になり得る. そのため、本研究では補 正手法による将来気候の降水量プロダクトの差異を比較 する際に「観測」に対する変化を基に議論する事とした.

また,降水量プロダクトを影響評価に用いるという観 点からは,水災害につながりうる持続する大雨に対する 補正能力は重要な関心事である.そのため,本研究では 極端降水量としては,年最大5日合計降水量に着目して 補正プロダクトの比較を行う.

具体的には、本研究はまず初めに、降水量データの現 在気候(1981-2000年)における夏季平均降水量の平均値、 分散、年最大5日合計降水量の平年値を観測降水量と比 較した.次に、降水量データの将来気候(2081-2100年) における平均値、分散、年最大5日合計降水量の平年値 を観測降水量と比較した.

更に,現在気候における観測降水量および作成した降水量プロダクトに対してパターン認識手法を適用し,各降水量データの日降水量空間分布パターンの再現性を検討した.

3. 提案するバイアス補正手法と種々のバイ アス補正手法による降水量プロダクトの比較

1) 現在気候(1981-2000)の降水量プロダクトと観測値 の夏季降水量との比較

まず,現在気候における降水量プロダクトと観測降水 量の夏季平均日降水量の差を調べた.RCM直出力には モデル間で夏季平均日降水量の空間分布に観測降水量と 相違があるものの,既存の三手法によるバイアス補正を 行うことで,夏季平均日降水量は観測にほぼ一致する値 へと補正されていた.一方,離散ウェーブレットによる 補正プロダクト(図-1左下図)は,観測の夏季平均日 降水量と比べ、東北~北陸日本海側から木曽山脈にかけ てバイアスが残っているが,その他の地域ではモデル直 出力(図-1左上図)と比べて夏季平均降水量が改善さ

図-1 左上図:1981年~2000年におけるNHRCM内 挿と観測との夏季平均日降水量の差 [mm] と、右上図:グリッド毎の差の値のヒストグ ラム、左下と右下も同様の図.ただし、 NHRCMに対してDWT手法を用いた場合.

れていた.

次に、現在気候におけるモデル降水量と観測降水量の 夏季平均日降水量とで分散の比を調べた、その結果、夏 季平均日降水量の分散は基本的な傾向としては、観測に 近い値へと補正されてはいるが、分散のバイアスの空間 分布はモデル間でやや異なる傾向があった. また, 例え ばNHRCMの出力に着目すると(図-2上段),北陸日 本海側~中部地方日本海側で分散がやや過大評価となっ ているものの、その他の地域では観測に近い値へと分散 も補正されている.更に、年最大5日合計降水量の補正 精度を調べると(図-2下段),離散ウェーブレットに よる補正は優れた補正精度を示している事が確認される. これは、離散ウェーブレットを利用して数日以上の時間 スケールの変動成分が観測に合うように補正するという, 本研究で提案した離散ウェーブレットによる補正手法の 性質によるものと考えられる. なお、平均値の比その他 の手法でも年最大5日合計降水量に対して良好な補正精 度を示していたが、月降水量の比を用いた場合は、やや 大きなバイアスが残る地点が見受けられた.

2) 将来気候(2081-2100)の降水量データと観測値の 夏季降水量との比較

まず,将来気候における降水量データと観測降水量の 夏季平均降水量の差を調べた.現在気候では,モデル間 においては,バイアス補正された夏季平均降水量にあま り相違は見られなかったものの,将来気候では各モデル 間およびバイアス補正手法間で平均値の空間分布の差異 が現在気候より大きくなっており,バイアス補正手法ま たは用いるモデルによる不確実性が,将来気候では現在 気候と比べてより大きくなっている可能性が示唆される.

 図-2 NHRCM(現在気候:1981-2100年)と観測(現在気候:1981-2000年)との夏季平均日降水量の分散の 比(上段)および年最大5日合計降水量の比(下段). MEANは全グリッドの平均値,STDは標準偏差 を表す.モデル(将来気候2081-2100年)と観測(現在気候:1981-2000年)との年最大5日合計降水量 の平年値の比.

図-3 モデル(将来気候:2081-2100年)と観測(現在気候:1981-2000年)との夏季平均日降水量の分散の比. MEAN, STDは図-2と同様.

図-3には、将来気候における降水量データと観測降水量の夏季平均降水量の分散の比を示す.図-2最上段の現在気候におけるNHRCMの分散の比と、図-3最上段の将来気候におけるNHRCMの分散の比を比べると、補正手法間の空間分布のバラつきの大きさは、図-3の将来気候の方が大きくなっている.また、分散の空間分布は、バイアス補正手法の相違の影響が平均値に比べて大きい傾向があった.なお、地域気候モデル間における補正プロダクトの差異も、将来期間は現在期間よりも大きい傾向があった.

図-4には、将来気候における降水量データと観測降水量の年最大5日合計降水量の平年値の比を示す.図-4より、分散の場合と同様に、将来気候については、年最大5日合計降水量の平年値のモデルおよびバイアス補正手法間の相違が大きくなっていることが分かる.今回の解析結果からは、将来変化に関してCDFとDaily scaling 手法は比較的似た傾向を示していた.CDF手法とDaily scaling 補正係数(または写像)を定めるという点において手法 上類似しており、そのため将来気候の日降水量が現在気 候の降水量と同程度の絶対値であった場合は、両手法に よる補正結果は大よそ近い値になると推察される.

従って、複数のバイアス補正手法を日降水量に対して 適用する際の一つの方法としては、CDFまたはDaily scaling手法のいずれかに加えて、補正精度は劣るものの 簡便に用いることができる月平均値の比による補正方法 を用い、更に5日合計降水量のような持続特性を持つ量 の評価が必要になる場合には、離散ウェーブレットによ る補正方法を更に補正手法として検討するという方法が 考えられる.

3) 現在気候(1981-2000)の降水量プロダクトと観測値の夏季降水量の空間分布の比較

日降水量が降雨流出モデルの入力として用いられる際 には、降水量の空間分布は地表の表面被覆や地形条件を 介して、流出特性に大きな影響を与えうる.したがって、

図ー4 モデル(将来気候2081-2100年)と観測(現在気候:1981-2000年)との年最大5日合計降水量の平年値の比. MEAN, STDは**図-2**と同様.

図-5 抽出した夏季日降水量の空間分布パター ンと観測日降水量における各パターンの発生 回数(日)

バイアス補正手法の違いが降水量の空間分布に与える影響を明らかにすることは、バイアス補正されたデータを 水文分野で用いる際には重要であると考えられる.そこ で本節ではパターン認識手法を用いて、バイアス補正さ れた降水量やモデル出力降水量の空間分布再現性を以下 の手順で評価した.

まず、観測値、各3つの気候モデル出力を空間内挿した日降水量(バイアス補正なし),各3つの気候モデルにそれぞれ4つのバイアス補正手法を適用して得た日降水量,の計16通りの日降水量データセットそれぞれについて、対象領域のデータを0.2°間隔で抽出した.次に、

1981-2000年の20年間における夏季(6月,7月,8月の計 92日)を対象として、日本の日降水量分布を表すデータ を作成した.即ち,92日×20年間×16セット=29,440個の 入力データ(各入力は1,076次元)を作成し、それらを 自己組織化マップ¹⁵⁾というパターン認識手法にマップサ イズを3×3(9パターンに対応)として入力した.これに より、観測データから日降水量の空間分布パターンを9 通り抽出した.SOMは、抽出したパターンを2次元平面 状にその類似性を考慮して配置する事ができる手法であ り、GCM出力の特性評価¹⁰にも用いられている.

抽出した9つの空間パターンと、各パターンの観測 データにおける20年間での発生日数を、それぞれ図-5に 示す. また, 内挿モデル出力, 4つのバイアス補正手法 データのそれぞれについて, 各パターンに分類された日 数の観測値との差を図-6に示す. 図-5より、例えば マップ左上には、中日本~西日本にかけて強い雨となっ ており、梅雨と関連した降水分布が抽出されていると考 えられる. また、マップ右下のパターンは最も観測値で の発生頻度が高く、日本全国的にほぼ無降雨(または非 常に少雨)のパターンとなっている.また,図-5に示 されているマップ右下の空間パターンと、図-6の第1列 の3つの各図の右下のセルの発生頻度を見ると、モデル 出力を内挿して得た降水量データは、全国的に無降雨 (または非常に少雨)の発生頻度が観測に比べて低いと いうバイアスがあることが分かる.また、バイアス補正 を行うことで、各パターンの発生日数の観測との差が小 さくなる傾向があり、バイアス補正を行うことで、 夏季 日降水量の空間分布の再現性が向上することが分かる. また、提案した離散ウェーブレット手法も基本的には、 RCM内挿と比べて空間分布を向上させる傾向があるこ とが確認された.しかし、提案手法を含むどの補正手法 を用いた場合でも、観測と発生日数が完全に一致してい るわけではなく、空間分布のバイアスがある程度は残っ ていることに留意する必要がある.

4. 結論

本研究では降水量の変動を幾つかの時間スケール別に 分解し、その変動の時間スケール毎に変動の強さのバイ アスを補正する手法を提案することで、降水量の時間的 変動特性という観点から降水量のバイアス補正を行うこ とができた.また、複数のバイアス補正手法を複数の地 域気候モデルに用いることで、気候モデルとバイアス補 正手法に起因する不確実性を検討した.その結果、分散 や持続的な大雨のような量に関しては、用いる地域気候 モデルおよびバイアス補正手法の違いによって、将来値 が大きく異なり得る可能性が示された.本研究で提案し たバイアス補正手法は、持続する大雨に対しては比較的 良い補正能力を有することが分かった.また、バイアス 補正を行う事で、夏季平均降水量の空間分布は改善され る一方、9通りの降水量空間分布パターン毎の発生日数 は、地域気候モデルや用いたバイアス補正手法によって 異なる傾向があった.

謝辞:本研究は環境省地球環境研究総合推進費(S-10) および環境省地球環境研究総合推進費(S-5)の成果の 一部です.ここに謝意を表します.

引用文献

- Fowler H.J., S. Blenkinsop, and C. Tebaldi : Linking climate change modelling to impact studies: recent advances in downscaling techniques for hydrological modelling, *International Journal of Climatology*, Vol. 27, pp. 1547-1578, 2007.
- 2) 飯泉仁之直,西森基貴,石郷岡康史,横沢正幸:統計的 ダウンスケーリングによる気候変化シナリオ作成入門, 農業気象, Vol. 66, No.2, pp. 131-143, 2010.
- Ines, A. V. M., and J. W. Hansen : Bias correction of daily GCM rainfall for crop simulation studies, *Agricaltural and Forest Meteorology*, Vol. 138, pp. 44-53., doi:10.1016/j.agrformet. 2006.03.009, 2006.
- Piani, C., J.O. Haerter, and E. Coppola : Statistical bias correction for daily precipitation in regional climate models over Europe, *Theoretical and Applied Climatology*, Vol.1, No.2, pp. 187-192., 10.1007/s00704-009-0134-9, 2009.
- 5) Terink W., R.T.W.L. Hurkmans, P.J.J.F. Torfs and R. Uijlenhoet : Evaluation of a bias correction method applied to downscaled precipitation and temperature reanalysis data for the Rhine basin, *Hydrology and earth system sciences*, Vol. 14, pp. 687-703, 2010.
- 渋尾欣弘,鼎信次郎:大雨に着目した気候モデル日降水 量出力のバイアス補正手法比較,水工学論文集,第54巻, pp. 235-240, 2010.
- Haerter, J.O., S. Hagemann, C. Moseley, and C. Piani : Climate model bias correction and the role of timescales, *Hydrology and Earth System Sciences*, Vol. 15, pp. 1065-1079, doi:10.5194/hess-15-1065-2011, 2010.
- Kumar, P. : Wavelet analysis for geophysical applications, *Reviews of Geophysics*, Vol. 35, No.4, pp. 385-412, doi:10.1029/97RG00427, 1997.
- Johnson, F., S. Westra, A. Sharma, and J. Pitman : An assessment of GCM skill in simulating persistence across multiple time scales, *Journal of Climate*, Vol. 24, No. 14, pp. 3609-3623, 2011.
- 10) Saito K., Fujita T, Yamada Y, Ishida J, Kumagai Y, Aranami K, Ohmori A, Nagasawa R, Kumagai S, Muroi C, Kato T, Eito H, Yamazaki Y : The operational JMA nonhydrostatic mesoscale model, *Mon. Wea. Rev.*, Vol. 134, pp. 1266-1298, 2006.
- Pielke RA, Cotton WR, Walko RL, Tremback CJ, Lyons WA, Grasso LD, Nicholls ME, Moran MD, Wesley DA, Lee TJ, Copeland JH : A comprehensive meteorological modeling system – RAMS, *Meteorol. Atmos. Phys.*, Vol. 49, pp. 69-91,

1992.

- 12) Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, M.G. Duda, X.-Y. Huang, W. Wang, and J. G. Powers : A description of the Advanced Research WRF Version 3. NCAR Tech. Notes-475+STR, 2008.
- 13) Kiem A. S., H. Ishidaira, H. P. Hapuarachchi, M. C. Zhou, Y. Hirabayashi, and K. Takeuchi : Future hydroclimatology of the Mekong River basin simulated using the high-resolution Japan Meteorological Agency (JMA) AGCM., *Hydrological Process*, Vol. 22, No. 9, pp. 1382-1394., DOI: 10.1002/hyp.6947., 2008.
- 14) Kamiguchi, K., O. Arakawa, A. Kitoh, A. Yatagai, A. Hamada, and N.Yasutomi : Development of APHRO_JP, the first Japanese high-resolution daily precipitation product for more

than 100 years, *Hydrological Research Letters*, Vol. 4, pp. 60-64, 2010.

- 15) Kohonen, T. : Self-Organized Formation of Topologically Correct Feature Maps, *Biological cybernetics*, Vol. 43, pp. 59-69, 1982.
- Leloup, J., Lengaigne, M. et al. : Twentieth century ENSO characteristics in the IPCC database, *Climate Dynamics*, Vol. 30, No.2-3, pp. 277-291, 2008.

(2016.4.7受付)

APPLICATION OF TIME-FREQUENCY ANALYSIS METHOD FOR BIAS CORRECTION OF DAILY PRECIPITATION OUTPUT FROM CLIMATE MODELS WITH COMPARIING VARIOUS BIAS CORRECTION METHODS

Yoshihiko ISERI1 and Shinjiro KANAE1

¹School of Environment and Society, Tokyo Institute of Technology

This study focused on precipitation outputs from regional climate models and compared the properties of precipitation products which were obtained by using several bias correction methods. Result indicated future change of variance and continued heavy rainfall (i.e. 5 days total rain) could largely vary according to the choice of bias correction methods and regional climate models.

This study also suggests a bias correction method which aims to correct temporal variation of daily precipitation obtained from the climate models. The proposed method showed relatively better performance in reproducing maximum 5 days total precipitation, which statistics would be important in evaluating the potential for water disasters. Result also indicated although spatial distribution of daily precipitation is improved by bias correction methods, the frequencies of each precipitation pattern are different according to regional climate models and employed bias correction methods.