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1. INTRODUCTION 

Wildfire is a critical component of the natural earth 
system’s ecological process at scales ranging from local to 
global. Higher temperatures, more rain-free days, more 
wildfire events, and more wildfire-affected areas induce 
significant wildfire danger variations (Vitolo, 2020). 
Determining a suite of global climatic drivers that explain 
most of the variations in different homogeneous wildfire 
regions will be of great significance for wildfire 
management and wildfire prediction. Until now, previous 
studies have not filled gaps in exploring the 
spatiotemporally homogeneous regions of global burned 
areas and multiple climatic influences. Therefore, the main 
aim of this study was to analyze the relationships between 
major wildfire patterns and various global climatic drivers. 
First, the distinct empirical orthogonal function (DEOF) 
was applied to identify the spatiotemporally homogeneous 
regions of burned area around the world. The cross wavelet 
transform (XWT) and wavelet coherence (WCO) were 
used to analyze the relationships between wildfire burned 
area in major patterns and various global climatic drivers 
based on global burned area patterns.  

 
2. MATERIALS AND METHODS 
2.1. Data source 

We used Fire CCI v5.1 dataset for burned area. 
Chuvieco et al. developed the Fire CCI v5.1 burned area 
dataset during 2001~2019 based on a hybrid approach that 
combines a MODIS highest resolution (250 m) near-
infrared band and active wildfire information from thermal 
channels (Chuvieco et al., 2007). In addition, Fire CCI v5.1 
was considered to perform better than other fire dataset, 
especially in terms of small wildfire detection capacity. 
And, to avoid local variations, we performed the data 
aggregation and changed the spatial resolution of the 
original data. Therefore, to obtain better homogeneous 
burned area results, the Fire CCI v5.1 dataset was 
processed to a 1°×1° resolution based on the monthly scale. 
And the monthly log-transformed burned area anomalies 
(logBAA) were calculated to increase attention to wildfire-
sensitive ecosystems. 

Also, sixteen global climatic drivers that may have 
impacts on wildfires were selected: Polar/Eurasia 
Pattern(POL), Dipole Mode(DMI), Arctic Oscillation(AO), 
Antarctic Oscillation(AAO), Western Pacific Pattern(WP), 
East Atlantic/Western Russia Pattern(EA/WR), 
Pacific/North American Pattern (PNA), Pacific Decadal 
Oscillation(PDO), East Pacific/North Pacific 
Oscillation(EP/NP), Multivariate ENSO Index(MEI), 
Oceanic Niño Index(ONI), Atlantic multidecadal 
Oscillation(AMO), North Atlantic Oscillation(NAO), East 
Atlantic Pattern(EA), Tropical Northern Atlantic 
Pattern(TNA), Tropical Southern Atlantic Pattern(TSA). 
2.2. Distinct Empirical Orthogonal Function 

The empirical orthogonal function (EOF), which deals 
with temporal and spatial functions, is used to extract the 

spatiotemporal modes based on the data variance 
representations. The EOF analysis method can decompose 
the time-varying variable fields into the space function part 
(EOFs) that does not change with time and the time 
function part (principal components, PCs) that depends 
only on time. The distinct EOF (DEOF) analysis was 
subsequently introduced to overcome problems in the EOF 
analysis (Dommenget, 2007). In the DEOF, a continuous 
spectrum of spatial patterns resulting from a stochastic 
process can be represented by EOF modes, where some 
spatial structures will be more dominant than others. Based 
on the isotropic diffusion null hypothesis, the EOF modes 
(DEOFs) can be found by rotating the leading EOF modes, 
corresponding to the distinguished principal components 
(DPCs). These DPCs take up a large part of the total 
variance in all the variables in the original field, which is 
equivalent to the main information of the original field 
concentrated on a few main components. The higher the 
eigenvalues, the more typical the corresponding modes, 
and the more significant the contribution to the total 
variance. 
2.3. Wavelet analysis 

The continuous wavelet transform (CWT) is widely 
used for analyzing the frequency domain of 
hydrometeorological time series. The spectral and 
temporal features of the time series can be projected onto a 
time-frequency plane by CWT, where the dominant cycle 
period and its duration can be identified. The square 
modulus of the CWT defines the wavelet power spectrum 
(WPS), which represents the signal energy at a specific 
scale (period) and time. In this paper, the time-frequency 
domain of DPCs was analyzed by CWT. The specific 
calculation process for the CWT can be found in Torrence 
et al. Notably, CWT brings about a cone of influence (COI) 
that delimits a region of the WPS beyond which the edge 
effects become significant, which means that outcomes 
outside COI should be suspected (Torrence et al., 1998). 

 
3. RESULTS AND DISCUSSION 

The DEOF calculation used the logBAA time series of 
each 1°×1° grid cell on a monthly scale. The first eight 
DEOFs represented 30.0% of the total variance. Fig. 1 
displays the spatial patterns of DEOF1~8 and location 
distribution of the top three global climatic drivers with the 
strongest influence on DEOF patterns. Different DEOFs 
represented different abnormal characteristics of wildfire 
burned areas. Specifically, the top 20% of the largest 
(smallest) DEOF values are considered high positive (low 
negative) loading values. For example, in DEOF2, the 
spatial distribution illustrated that low negative loadings 
occurred in Part of Russia and Ukraine. Meanwhile, the 
high positive loadings were mainly concentrated in 
northern Kazakhstan, which also meant that these regions 
had opposite characteristics as those of the negative 
loading regions.  

II-10 土木学会東北支部技術研究発表会（令和3年度）



 
 
 

Some regions frequently appeared in different DEOF 
patterns. Region-1 (around Ukraine and Kazakhstan) was 
found in DEOF1~3. Although the three most dominant 
global climatic drivers changed with the DEOF patterns, 
AMO, EP/NP and PNA were the strongest influencing 
drivers among these five climatic drivers, indicating that 
these three global climatic drivers had a relatively strong 
impact on region-1. For DEOF3, DEOF5 and DEOF8, 
there were three different combinations of global climatic 
drivers affecting region-2 (Australia): MEI-DEOF3, AO-
DEOF5 and EA/WR-DEOF8. The global climatic drivers 
that affect region-3 (Brazil) have become very diverse, 
where they were found to be affected by ten different 
global climatic drivers. Affected by ten climatic drivers, 
PNA, AO, POL and EA/WR were the dominant global 
climatic drivers in region-3 of DEOF4~7. 

 
Fig. 1.  The location distribution of the top three global climatic 
drivers with the strongest influence on DEOF patterns. The red, 
blue and green rectangles indicate the strongest, second-strongest 
and third-strongest global climatic drivers on the DEOFs, 
respectively. The black circle indicates the common region in 
different patterns. 
 

Fig. 2 shows the global coherence coefficients, 
providing an evaluation of averaged coherence between 
monthly DPCs and the top three global climatic drivers 
over different timescales. By plotting the top three indices 
together, it becomes possible to compare the relative 
coherence significance of each index in each logBAA 
pattern under all-time scales. Only DPC1 had high 
coherence coefficients with global climatic drivers on the 
annual scale and multiyear scale simultaneously. For 
DPC3, there were high global high coherence coefficients 
on an approximately two-year scale and more than a four-
year scale. These results indicated that certain global 
climatic drivers could have strong effects on both large and 
small time scales. However, other DPCs only showed high 
coherence coefficients on time scales larger than 32 months. 
In particular, some global climatic drivers did not reach 
high global coherence coefficients on all time scales, such 
as PNA-DPC2 and ONI-DPC6, indicating that these global 

climatic drivers have only limited impacts on these DEOF 
patterns.  

 
Fig. 2. The global coherence coefficient between global climatic 
drivers and the temporal patterns of DPC1~8. 

 
4. CONCLUSIONS 

The main conclusions obtained from this paper are 
summarised as follows: (1) Eight patterns with different 
spatiotemporal characteristics were identified. (2) The 
most significant global climatic drivers that strongly 
impacted each of the eight major wildfire patterns were 
identified. (3) The most significant combinations of 
hotspots and climatic drivers were Atlantic multidecadal 
Oscillation-East Pacific/North Pacific Oscillation 
(EP/NP)-Pacific North American Pattern (PNA) with the 
pattern around Ukraine and Kazakhstan, El Niño/Southern 
Oscillation-Arctic Oscillation (AO)-East Atlantic/Western 
Russia Pattern (EA/WR) with the pattern in Australia, and 
PNA-AO-Polar/Eurasia Pattern-EA/WR with the pattern in 
Brazil. 
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