コンクリートの表面硬度が衝撃弾性波法による内部欠陥の測定に及ぼす影響

東北学院大学 工学部環境建設工学科 ○学生会員 戸部 達也東北学院大学 工学部環境建設工学科 非会員 高橋 翔真東北学院大学 工学部環境建設工学科 正会員 李 相勲

1. はじめに

大きさと形状が異なる欠陥を有するコンクリート供 試体に対し、打撃により弾性波速度を測定することで 内部欠陥の有無や大きさが測定できることが関連研究 ¹⁾より確認されている。その測定精度には様々な因子 が関わっており、インパクターの直径と測定対象の寸 法の関係²⁾は既に分かっていたが、同じ試験体であっ ても表面の劣化が進んでいる面と比較的に健全な状態 の面での測定結果が異なることが予備実験で明らかに なった。本研究では、コンクリート平板供試体に対し て、厚さ方向の共振周波数を測定することで弾性波速 度を求めるとともに、打撃面の表面硬度を測定するこ とで、コンクリートの風化・劣化による測定性能への 影響を検討した。

2. 弾性波速度の測定方法

多重反射法は図-1 に示すように、コンクリート表面 をインパクターで衝撃を与え、とらえた波形から厚さ 方向共振周波数を求めることで、式(1)を用いて厚さや 強度推定などに活用する方法である。

$$V=2 \cdot f \cdot D \tag{1}$$

D:部材厚さ(m)f:共振振動数(Hz)V:弾性波速度(m/s)

本研究では、直径約 16、19、25mm のインパクター を用い、多重反射法で測定した。通常、供試体の厚さ の約 1/10 の直径のインパクターを使用するが、図-2 に示すように、インパクターの直径が大きくなるほど 低周波数が励起されやすくなる。特性を生かし最適な 共振周波数を検出するために 3 種類を使用した。

3. 供試体概要と実測面

測定の対象は、図-3 に示すよう大きさと形状の異 なる内部欠陥を有するコンクリート平板供試体(以 下、内部欠陥供試体という)である。欠陥供試体の寸 法は長さ 800×高さ 800×厚さ 200mm の直方体であ る。欠陥ありの5つの測定箇所 A、C、E、G、I と欠 陥なしの4 つの B、D、F、H の計9か所を測定箇所 とした。各欠陥の位置、大きさなどの詳細をそれぞ れ,図-3 と表-1 に示す。

図 2 内部欠陥供試体の概要図(東面)

表-1 内部欠陥の深さ(mm)

欠陥の 大きさ	A (\ \ \ 200)	G (\ \ 0100)	Е (ф50)	I (□150)	C (□100)
東面から	150	50	100	100	150
西面から	50	150	100	100	50

キーワード衝撃弾性波法,弾性波速度,コンクリート供試体,表面硬度連絡先〒981-8537宮城県多賀城市中央 1-13-1TEL: 022-368-7213

4. 測定結果

1) 各測定点での弾性波速度と周波数の測定結果

東面と西面で求めた弾性波速度を比較すると、東面 は欠陥なしで 2510.4~2926.6m/s 、欠陥ありで 2066.4~2758.4m/s となった。西面は欠陥なしで 3587.4~3875.4m/s 、欠陥ありで 1523.6~3439.0m/s となっており、本来どの測定面から測定面からでも同 じ結果が期待される。欠陥なしの弾性波速度が東面の 平均(2778.2m/s)が西面平均(3708.9m/s)の約 75%担 っていることが分かる。この原因として東面の表面の 状態が検出すべき 8 千 Hz 代の周波数成分を発生させ るための十分な硬度を有していないことが考えられる。 2)表面硬度の測定

内部欠陥供試体のコンクリート表面の状態を調べ るために、引っかき試験器とシュミットハンマーを用 いて、表面硬度を測定した。測定に使用したのは日本 建築仕上学会式の引っかき試験器で加圧力 1.0kgf と 0.5kgf の 2 つで表面に傷を作り表面硬度を測定す る。その判定方法を表-3 に示し、結果を表-4 に示 す。

		東面		西面		
	測定位置	周波数(Hz)	V(m/s)	周波(Hz)	V(m/s)	
欠陥あり	Α φ200	5619.0	2247.6	3809.0	1523.6	
	G ø100	6829.3	2731.7	7405.3	2962.1	
	Ε φ 50	6246.6	2498.6	8597.4	3439.0	
	I 🗆 150	5166.1	2066.4	5151.7	2060.7	
	C □100	6896.0	2758.4	6753.9	2701.7	
欠陥なし	В	7136.3	2854.5	8968.4	3739.6	
	D	6276.1	2510.4	9688.4	3875.4	
	F	7053.4	2821.4	9082.8	3633.1	
	Н	7316.6	2926.6	9348.9	3587.4	

表1各測定位置の弾性波速度および周波数

ア)引っかき試験器による測定

傷の幅を比較すると、西面は 1kg で 0.25~0.35mm、 0.5kg で 0.1~0.25mm 東面は 1kg で 0.6~0.7mm、0.5kg で 0.4~0.55mm であり表面硬度があることが確認され た。

イ)シュミットハンマーによる測定

反撥値を比較すると、東面は 33.5~38.5 の範囲で平 均が 36.0 となり、西面は 40.0~46.1 の範囲で平均が 43.5 になった。この結果からも、東面よりも西面の方 が硬度があることが確認された。

また、表-4 から欠陥の有無や形状にかかわらず、東 面・西面それぞれの表面硬度は面全体均一であること が分かる。

表 2 各測定方法の表面硬度

欠	測	東面			西面		
陥	定	引っかき試験		シュミット	引っかき試験		シュミット
有	箇	加圧力		ハンマー	加圧力		ハンマー
無	所	1kg	0.5kg	反撥値	1kg	0.5kg	反撥値
	А	0.6mm	0.5mm	37.9	0.35mm	0.2mm	42.3
欠	G	0.7mm	0.5mm	33.5	0.35mm	0.25mm	44.3
陥	Е	0.7mm	0.5mm	36.3	0.35mm	0.25mm	44.5
あ	Ι	0.7mm	0.55mm	35.4	0.35mm	0.25mm	46.0
ŋ	С	0.65mm	0.45mm	37.6	0.3mm	0.25mm	45.6
	平均	0.67mm	0.5mm	36.1	0.34mm	0.24mm	44.5
欠	В	0.6mm	0.5mm	38.5	0.3mm	0.1mm	44.2
	D	0.65mm	0.55mm	35.9	0.25mm	0.15mm	46.1
旧りた	F	0.6mm	0.4mm	35.8	0.3mm	0.2mm	43.5
1	Η	0.65mm	0.5mm	33.9	0.3mm	0.25mm	40.0
	平均	0.63mm	0.49mm	36.0	0.29mm	0.18mm	43.5

表 4 引っかき試験の評価法(日本建築仕上学会)

No	1.0kg での傷の状態	判定
1	連続で最大幅 0.9 mm	表面強度が弱い
2	所々で最大幅 0.7 mm	多少の脆弱性がある
3	滑り傷跡最大幅 0.5 mm	表面強度がある
4	滑り傷跡最大幅 0.2 mm	充分な表面強度がある

5.結論

- ・弾性波速度を利用した内部欠陥の有無や大きさの測定には、正しい共振周波数の測定が重要であるが、 測定周波数は表面硬度と相関性があり、必要な周波数に見合う表面状態が測定条件となることが分かった。
- ・表面硬度を測定するには、シュミットハンマーの反 撥値が有効であり、簡易的な方法として引っかき試 験器についても一定の有効性があると確認された。

参考文献

 Lee, D., Lee, S.: Study on wave propagation velocity using concrete specimen with internal defects: The 5th Int. Conference on Soft Computing & Optimization in Civil, Structural & Environmental Engineering, 2019.9
黒澤直嗣,相良雄三,李相勲,遠藤孝夫: インパク ターの大きさが衝撃弾性波法によるコンクリート内部 欠陥の測定精度に及ぼす影響、平成 21 年度土木学会 東北支部技術研究発表会, V-16, 2010.3