ケーブル破断を考慮した斜張橋における静的応答解析

秋田大学大学院	学生会員	角田 晴輝
秋田大学大学院	正会員	青木 由香利
秋田大学大学院	学生会員	及川 大輔
秋田大学大学院	正会員	後藤 文彦

はじめに 1.

吊橋,斜張橋やアーチ橋など吊り形式橋梁におい て,ケーブルは命綱ともいえる重要な構造部材で ある.2019年に生じた台湾の南方澳大橋の落橋は, ケーブルの腐食・疲労による破断が原因であると考 えられており、ケーブル破断の危険性を示す典型的 な事例である、そこで本研究では、斜張橋を対象と し,ケーブル破断が橋全体の終局強度に及ぼす影響 を検討し,橋全体の崩壊過程を明らかにする.

解析モデルの諸元 2.

本研究で想定した斜張橋モデルの構造諸元および 常時設計荷重を示す、さらに構造解析により断面力 を求め、モデル橋および部材断面の妥当性を検討 する.

(1) モデル橋の諸元

想定した斜張橋は主スパン長 300m の鋼斜張橋で ある.実橋は2面吊り斜張橋であるが,片面のみを 考慮し,平面モデルとして解析した(図-1).主桁断 面は ,鋼製箱断面とし ,床版は鋼床版を想定した . 主 塔は2本柱で構成され,その断面は長方形とした. 鋼板材質は,SM400(降伏応力 235MPa) である. ケーブルを構成する鋼線の引張強度は 1570MPa と した.ケーブル断面積を表-1に示す.

図-1 解析モデル

表-1 ケーブルの断面積

Cable	R(mm)	A(mm ²)
C1	44.0	6362
C2-C6	43.0	5027
C7-C8	30.0	2827
C9-C11	43.0	5027
C12-C14	44.0	5675

常時設計荷重 (Pr+D+CW+L)**(2)**

橋軸方向単位長さあたりの死荷重(D)は,鋼桁 重量 (34.9 kN/m), 地覆・高欄 (12.2 kN/m), アス ファルト舗装 (14.2 kN/m) の合計 61.3 kN/m を主 桁に等分布載荷した.また,側径間にはカウンター ウエイト (CW, 30 kN/m) を載荷した. 死荷重作 用時に主桁および主塔の曲げモーメントが平滑化か つ最小になるようにケーブル・プレストレス (Pr)を導入した. 活荷重 (L) は道路橋示方書の B 活 荷重とした. すなわち,集中荷重 $p1(10kN/m^2)$ を 10m 長さおよび幅員 5.5m に作用させる. ただし, その他の部分は $5.0 \mathrm{kN/m^2}$ とする. さらに,分布 荷重 $p2(3.5 \mathrm{kN/m^2})$ を幅員 $5.5 \mathrm{m}$ に作用させる.た だし,その他の部分は $5.0 \mathrm{kN/m^2}$ とする.なお,集 中荷重はスパン中央に,等分布荷重は全径間に載荷 した.

3. 解析方法

解析モデルは骨組み構造とし、主桁および主塔は ファイバー要素に分割した.ケーブルは円形断面の 鋼棒でモデル化をした.材料の構成則は,鋼板はバ イリニア,ケーブルは引張側のみを有効とするト リリニアとした.(1)最初にケーブルプレストレス (Pr) を載荷し, 死荷重および活荷重(D+L) を漸増 させた. すなわち,

$$P = Pr + k (D+L) \tag{1}$$

である .k は荷重増加係数であり,0.01 ずつモデル橋が崩壊するまで増加させた.終局時の.k を終局荷重係数.ku とした.(2) 腐食などの原因によりアンカーケーブル(C1) が破断したと仮定した.静的解析により 1 本のケーブルが破断直後,衝撃荷重が作用し連鎖的に他のケーブルが破断する様子を解析した.本研究で用いた解析プログラムは,.ku Memtat .ku 2018である.

4. 解析結果

(1) 弹塑性崩壊解析

図-2 常時設計荷重による変形

(2) ケーブル破断を考慮した静的応答解析

a) C1 が破断した直後

C1 が無くなった構造系に,C1 の引張方向の荷重が衝撃荷重として作用する.衝撃荷重は,C1 の引張軸力の2倍が作用すると考え,2.0 x FC1 を作用させる.その結果,全ての主桁および主塔断面は弾性範囲内である.破断したC1 に隣接するC2

の応力は $827N/mm^2$ となり第一降伏点には達しない.また主桁のスパン中央の応力は $127.5N/mm^2$ であった.したがって,全体崩壊には至らない.しかし,ケーブルが腐食している場合には,断面積の減少,じん性の低下の可能性もある.したがって,C2 も破断する可能性がある.

b) C2 が破断した直後

C1 の破断に続き C2 が破断する場合を検討する . C1 および C2 が無くなった構造系に , 衝撃荷重を作用させる . 衝撃荷重は , C1 の引張軸力の 2 倍が作用すると考え , $2.0 \times FC1 + 2.0 \times FC2$ を作用させる . C2 に隣接する C3 の応力は $1095 N/mm^2$ となり第一降伏点には達しない . したがって , 全体崩壊には至らない .

c) C3 が破断した直後

C2 に続き C3 が破断する場合を検討する.C1 $\sim C3$ が無くなった構造系に,2.0 × FC1+2.0 × FC2+2.0 × FC3 を作用させる.その結果、C5 付近の主桁断面が全塑性断面となり塑性ヒンジが形成され,橋全体が崩壊する.そのとき,C3 に隣接する C4 のひずみは破断ひずみに近い 0.039 となる.

5. まとめ

弾塑性解析により斜張橋モデルの崩壊過程および 終局強度を求めた、以下を確認した.

- 1)スパン中央の主桁に塑性ヒンジが生じ崩壊した.
- 2) ケーブル C1, C2, C3 は塑性点に達し,主塔基 部は部分塑性した。
- 3) 終局荷重係数 ku は 2.66 になった.

そして静的解析によりアンカーケーブルが破断した 直後,衝撃荷重により連鎖的に他のケーブルが破断 する様子を解析した.

1) C1 および C2 が破断しただけでは全体崩壊に至らず,C3 が破断した直後,C5 付近の主桁が全塑性断面となり橋全体が崩壊した.

参考文献

1) 中村俊一,青木由香利: [ケーブル腐食を考慮した斜張橋の終局強度及び疲労寿命] 構造工学論文集 Vol. 67A (2021 年 3 月)