プレキャスト RC 高架橋接合部に関する検討

東日本旅客鉄道	(株)	東北工事事務所	正会員	〇井上	聡子
東日本旅客鉄道	(株)	東北工事事務所	正会員	大塚	隆人
東日本旅客鉄道	(株)	東北工事事務所	正会員	山本	達也
東日本旅客鉄道	(株)	東北工事事務所	正会員	米山	睦美

1. はじめに

RC 高架橋の現場施工では,線路上空等の作業に 時間的制約が課され,長い工期を必要とする場合が ある.そこで,線路上空作業を削減し工期を短縮す ることを目的に,柱,梁をプレキャスト,接合部を 現場打ちとした門型 RC 高架橋の建設を想定し,正 負交番試験を行った.本稿では,接合部の形状の違 いが破壊形態にもたらす影響について報告する.

2. 試験条件

2.1. 載荷条件

図-1 に示すような RC ラーメン高架橋を模擬した L型の供試体を製作した.試験では,供試体の上層 横梁が下面となるよう実構造物の向きから 180 度回 転させ,図-2のように設置した.主筋が降伏に至る 変位を 18 とし,18 ずつ変位を増加させ,せん断ス パン比が 2.25 となる位置に橋軸直角方向に載荷した. 載荷の繰り返し数は,供試体 No.1 が1回,供試体 No.2 は 3回としている.なお,柱には実構造物反力 相当の軸力を加えた.

2.2. 供試体諸元(No.1)

No.1 は現場施工を想定し, 接合部の継手の形状を, 梁は曲げ半径を 3 φ とするループ, 柱は半円形フッ クとした. 供試体の形状を図-3, 諸元を表-1 に示 す. なお, 継手が帯鉄筋の機能を果たすと考え, 接 合部に帯鉄筋を配置していない.

2.3. 供試体諸元(供試体 No.2)

図-1 のように、梁はプレキャストコンクリート、 接合部は現場施工を行うと想定し、接合部の継手は 梁、柱ともに曲げ半径を10々とするループ継手¹⁾と した.供試体体形状を図-4、諸元を表-1に示す.本 供試体には、隅角部での損傷を抑えるため、文献²⁾ を参考に150 mmの突出梁を設けた.

図-3 供試体 No.1 形状 図-4 供試体 No.2 形状

表-1 供試体諸元

立(7	供封体 断面寸	熊西井法	右効直や	井と断	主鉄筋		帯鉄筋		平均軸方				
材	名称	(mm)	有 XD同 C d (mm)	スパン比	径-材質	本数	引張鉄筋比	径-材質	組数	帯鉄筋比	向応力度 (N/mm ²)	備考	
柱	供試体		3 550 × 500 H 550	500 2. 25	D22-	8	0.56%	D16-SD345	1	1 0.60%	0.50	突出梁なし	
	No. 1	$_{\rm B}$ 550 $ imes$			SD345			ctc120mm	1			フック継手	
	供試体	H 550			D22-	8	0.56%	D13-SD345	1	0.27%	1 01	突出梁あり(150 mm)	
	No. 2				SD345			ctc125mm	1	0.37%	1.01	ループ継手	
梁	供試体		572	579	-70	D25-	10	0.55%	D16-SD345	1	0.05%		接合部帯鉄筋なし
	No. 1	B 800 \times			SD345	10	0. 55%	ctc200mm	1	0.25%		ループ継手	
	供試体	H 650	H 650		D25-	12	0.63%	D13-SD345	1	0.25%		ループ継手	
	No. 2	600	000		SD345			ctc125mm				ルーノ施士	

キーワード:プレキャスト工法 RC 高架橋 接合部 連絡先:仙台市青葉区一番町3番1号TM ビル6階

3. 試験結果

3.1. 供試体 No.1

試験の結果、図-5のように、供試体は隅角部でせん断ひび割れが生じた.載荷時の水平荷重と変位の 推移を図-6に示す.正載荷では構造解析ソフトより 算出した計算値と同等の結果を得られたが、負載荷 では計算値ほどの耐力は認められなかった.

3.2. 供試体 No.2

試験の結果,図-7のように柱基部より1dの範囲 にひび割れが集中して発生し,曲げ破壊に至った. また,隅角部の状況について確認すると,図-8,図 -9のように,側面にひび割れが確認できるが,突出 梁には目立ったひび割れが見られなかった.水平荷 重と変位の推移を図-10に示す.計算値と比較する と正載荷、負載荷ともに同程度の結果を得られた.

3.3. 考察

試験結果と計算値の一覧を表-2 に示す. 最大荷重 比を P_{max+}:P_{max-}とすると, No.1 は 1:0.81 で, 負載荷 の最大荷重が正載荷に比べ低下したが, No.2 は 1:1.04 と, 負載荷も正載荷と同等程度であった. こ れは, 隅角部の損傷が荷重の低下へ影響したものと 考えられる.

図-5 損傷状況(No.1)

図-8 側面の状況(No.2)

図-7 損傷状況(No. 2)

図-9 突出梁の状況(No.2)

4. まとめ

RC 高架橋を門型に構築する際の接合部の形状の 違いによる破壊形態への影響を確認した. 柱, 梁の 接合部に,継手の形状の変更,帯鉄筋の追加,突出 梁を設けることで,負載荷時の強度の増加,復旧に おいて有利な柱部での曲げ破壊を確認できた. 接合 部の形状については引き続き検討していく

参考文献

 1) 佐川康貴, 片山強, 堤俊人, 松下博通: ループ継
手構造によるプレキャストコンクリート製斜角大型 ボックスカルバートの開発, コンクリート工学
Vol. 49 No. 3, 2011.3

2)中田裕喜,西村修平,田所敏弥,幸良淳志:ラー メン高架橋の柱梁接合部における機械式定着工法の 適用法,鉄道総研報告 vol.34 No.6, 2020.6

図-10 水平荷重一柱水平変位関係(No.2)

表−2 試験結果一覧									
試験体 名称	材料強度(N/mm²)		実験	直	計算値				
	コンクリートf'c	載荷方向	最大荷重 Pmax(kN)	最大荷重比 P _{max+} :P _{max-}	最大荷重 Pmaxcal(kN)	最大荷重比 P _{max+cal} :P _{max-cal}			
供試体 No. 1	30. 7	正+	236. 2	1 . 0 81	249.0	1 : 0.94			
		負一	-191.8	1 • 0.81	-235.0				
供試体 No.2	33. 3	正+	284.7	1 : 1 04	241.5	1 . 0 00			
		負一	-296.5	1 · 1.04	-241.0	1 . 0.99			