Extended B-spline 基底関数を用いた陰的 MPM による弾塑性解析

1. はじめに

本研究では Yamaguchi ら¹⁾の提案した EBS-MPM に弾塑 性構成則を実装し、複数の例題を通してその適用性に関し て検討を行うことを目的とする。検証例題として弾塑性体 モデルの斜面の安定計算と、微圧縮性超弾性体モデルを用 いた Cock の膜を採用し、EBS-MPM の精度に関して有限要 素解析の結果と比較検討する.

2. 解析手法

MPM (material point method) は連続体領域を Lagrange 粒子により離散化し, Euler 格子を用いて計算する手法であ り,その特徴から大変形問題へ適用される. EBS-MPM で は,陰的 MPM の離散化方法に特有の数値不安定性および 境界付近の精度低下を抑制するために Extended B-spline 基 底関数 (EBS)を適用した上で,Nitsche の方法により物質 境界に配置した境界粒子において Dirichlet 境界条件を課す. これにより,従来の MPM では適用が困難であった複雑な 境界条件を含む問題を取り扱うことが可能となる.

3. 数值計算例

3.1 斜面安定解析

陰的 MPM の弾塑性問題への適用性を検討するために, 図-1 に示すモデル形状と境界条件にて平面ひずみ状態を仮 定した斜面の安定計算²⁾を行う.変位境界条件は計算格子 に直接を課している.計算格子は一辺 1.0 m,初期状態とし て 1 格子内に 4×4 の粒子を等間隔に配置する.変形勾配の 乗算分解を仮定した有限変形弾塑性構成則を適用し,その 弾性構成則に Hencky 超弾性モデルを,降伏基準に Drucker-Prager モデルを採用する.文献²⁾と同様の材料特性を使用 し,粘着力 *c* と内部摩擦角 *o* は安全率(FOS)を用いて低 減させ,自重を *y* 方向に 100 等分して作用させる.

1次EBS (linear EBS) と 2次EBS (quadratic EBS) を用 いた解析結果として,斜面頂点の鉛直変位と安全率 (FOS) の関係を図-2 に示す.安全率 1.35 以下では 1次, 2次EBS

学生会員

正会員

正会員

正会員

菅井 理一

山口 裕矢

森口 周二

寺田 賢二郎

図-3 2 次 EBS を用いた FOS = 1.4 における変形図および累積塑 性ひずみの分布図.

ともに変位量が小さい. 2次 EBS で得た鉛直変位は安全率 1.4 で急激に変化している. FOS の極限解は 1.38 であり, 斜 面の不安定化を適切に表現できていると考えられる. 図-3 に示すように, 2次 EBS を用いた解析による安全率 1.4 で の累積塑性ひずみの分布図に, 円弧状の滑り線を確認でき る. 一方図-4 に示す 1次 EBS による解析結果として, 安全 率 1.5 での変形図と累積塑性ひずみの分布では 2次 EBS に よる分布に比べ, 不明瞭となっている. これらの結果より 計算精度を向上させるために, 高次 EBS を用いることが有 用といえる.

3.2 Cock の膜

Mises 降伏関数モデルでは塑性非圧縮性を示すが,これに 先立ち微圧縮性に対する EBS-MPM の性能検証を,微圧縮 性超弾性モデルの解析を通して行う.文献³⁾を参考に図-5 に示すモデルと境界条件,材料特性のもと,平面ひずみ状 態を仮定した 2 次元解析を行う.材料構成則は圧縮性 Neo-Hookean 超弾性モデルを使用する.モデル右辺に初期形状 において全荷重 1 N になるように分布荷重を鉛直方向に作

土木学会東北支部技術研究発表会(令和2年度)

図-41次 EBS を用いた FOS = 1.5 における変形図および累積塑 性ひずみの分布図.

図-5 Cockの膜のモデル形状と境界条件.

用させる. 左辺の拘束境界条件は Nitsche の方法を用いて課 している. 計算格子一辺の長さを変えて解析を行い,図-5 の評価点にて計測した鉛直変位の収束性を評価する. なお 1格子当たりの粒子数は格子サイズによらず一定で,4×4と する. 計算格子一辺の長さを,8.0,4.0,2.0,1.0,0.5,0.25 m と定め解析をした.

鉛直変位と格子サイズの逆数の関係を示した図-6から, より高次の EBS を用いた場合の方が良好な収束性を示して いることが分かる.参照解には一辺当たり100分割した二

図-71次EBS, 2次EBS, 3次EBSによる静水圧分布図.

次要素を用いた FEM 解析の結果を用いており, 鉛直変位は 0.2788 m である. 2次 EBS, 3次 EBS (cubic EBS) による 解は格子サイズ 1.0 m でどちらも 0.2772 m で,参照解にお おむね整合している. 図-7 に示す格子サイズ 1.0 m におけ る 1 次から 3 次 EBS によるモデル変形図および静水圧分布 より,高次 EBS により圧力振動が抑制されることを確認し た. これより高次の EBS を用いることで体積ロッキングを 抑制し,二次要素を用いた FEM 解析の結果と同程度の精度 で計算できると考えられる.

4. まとめ

斜面安定解析の結果から、高次 EBS を用いた陰的 MPM による解析が理論解と整合することを確認した.また微圧 縮性超弾性体モデルの解析では、高次の EBS を用いること で体積ロッキングを避け、解が FEM による解に収束するこ とを確認した.以上より陰的 MPM の精度が、FEM に匹敵 しうる可能性を示した.

今後は微圧縮性超弾性体モデルで確認した性能が,弾塑 性解析で同様に得られることを示すべく Mises 弾塑性体モ デルの解析を行い,微圧縮性挙動を示す現象の再現性能に 関して検討する予定である.

参考文献

- 1) Yamaguchi, Y., Moriguchi, S. and Terada, K.: Extended b-splinebased implicit material point method, *International Journal for Numerical Methods in Engineering*, in press.
- 2) Griffiths, D. and Lane, P.: Slope stability analysis by finite elements, *Geotechnique*, Vol. 49, No. 3, pp. 387–403, 1999.
- Iaconeta, I., Larese, A., Rossi, R. and Oñate, E.: A stabilized mixed implicit material point method for non-linear incompressible solid mechanics, *Computational Mechanics*, Vol. 63, No. 6, pp. 1243–1260, 2019.