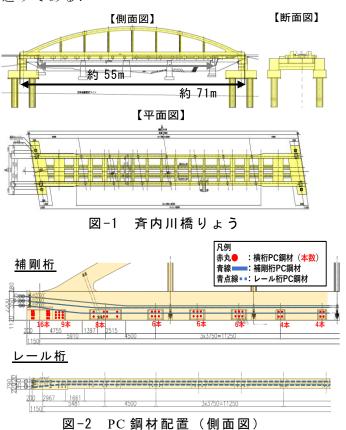
開床式 PRC ランガー桁の PC 鋼材緊張に関する解析的検討

東日本旅客鉄道(株) 東北工事事務所 正会員 〇大島 里紗 正会員 東日本旅客鉄道(株) 東北工事事務所 大塚 隆人

正会員 山本 達也


東日本旅客鉄道 (株) 東北工事事務所

1. はじめに

当社では、 斉内川と当社の軌道が交差する田 沢湖線斉内川橋りょうの改築を行う. 当該橋り ようは豪雪地帯にあるため、下に雪を落とせる ように開床式スラブを採用した, 斜角を持つ PRC ランガー桁である. スラブには断面変化が あり、応力集中が発生しやすいため、桁内の PC 鋼材を緊張させる際に,集中応力によるひび割 れや鉄筋破断が発生しないような注意が必要と なる. 本稿では, 開床式スラブにおいて前述のよ うな不具合を発生させにくい PC 鋼材緊張の手 法について、FEM により解析的検討を行った結 果について報告する.

2. 工事概要

本工事は現在の鋼単純桁 4 連で構成される橋 長約 55m 橋りょうを, 図-1 のような橋長約 71m の開床式 PRC ランガー橋に架け替える工事であ る. 緊張する PC 鋼材の本数および配置は図-2の 通りである.

3. 解析概要

閉床式ランガー橋の PC 鋼材の緊張は池田氏 らの論文¹⁾にもあるように、図-3のような順で 行うことが多いが, 応力集中が発生しやすい開 床式でも同様の手順が適切とは限らない. 本検 討では、図-3太枠の1次緊張時に桁に発生する 応力を FEM により解析し、応力集中の発生を 抑え, 桁に不具合が生じないような PC 鋼材緊 張順序についての検討を行った.解析ケースお よび諸条件は図-4、表-1、2、3の通りとした.

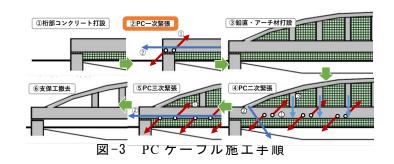
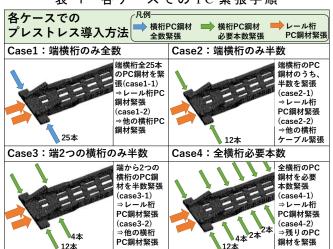



図-4 解析モデル拘束条件

表-1 各ケースでの PC 緊張手順

キーワード: PRC 構造 FEM 解析 開床式スラブ ランガー橋 ケーブル緊張

連絡先:仙台市青葉区仙台市青葉区一番町1丁目3番1号

表-2 載荷プレストレス

レール桁 PC 鋼材	圧縮力導入直後 (1316N/mm²)
横桁 PC 鋼材	有効プレストレス (900~1000N/mm²)

表-3 材料諸元

コンクリート	単位体積重量	24.5kN/m^3
	設計基準強度	50kN/mm^2
	弾性係数	$33,000 \text{N/mm}^2$
PC 鋼材	レール桁	SWPR19L 1S28.6
	横桁	SWPR7BL 12S15.2

4. 解析結果

(1) Casel 端横桁のみ全数

Case1 で解析した結果,表-4①②より横桁のPC 鋼材を緊張させた際(Case1-1)にレール桁の隅部に橋軸方向の2.5MPaの引張応力が発生し、隣接する横桁の側面には0.7MPaの橋軸直角方向の引張応力が発生した.さらに,表-4④より、レール桁のPC 鋼材も緊張させると(Case1-2)、隣接する横桁の側面に発生する橋軸直角方向の引張応力が1.3MPaと大きくなった.

(2) Case2 端横桁のみ半数

表-4①③より、レール桁の PC 鋼材を緊張させた際、レール桁に作用する橋軸方向引張応力は相殺されることがわかる.よって横桁 PC 鋼材を緊張した際の引張応力の増大を抑えるため、半数の PC 鋼材を緊張させる Case2 で解析を行った.その結果、表-4⑤⑥より、レール桁緊張前(Case2-1)に発生する引張応力を 1.3MPa 抑えられ、レール桁緊張後(Case2-2)も大きな応力は生じないことが示された.

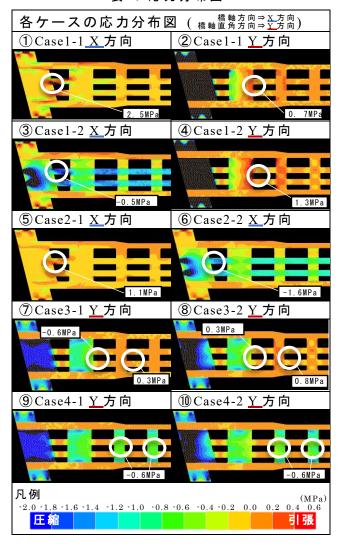

(3) Case3 端 2 つの横桁のみ半数

表-4②④より,横桁 PC 鋼材とレール桁 PC 鋼材の作用により,隣接横桁の側面の引張応力が高くなることがわかる. これは端横桁 PC 鋼材を緊張させることにより発生する偏心モーメントが影響するためである. 偏心モーメントを相殺するため,Case2 の結果も踏まえ,隣接横桁についても半数の PC 鋼材を緊張する Case3 で解析を行った. その結果,表-4⑦⑧より,隣接横桁に発生する応力は 0.3MPa に制御できたが,先隣の横桁の引張応力が 0.8Mpa に増大した.

(4) Case4 全横桁必要本数

Case3 においても隣接横桁に引張応力が生じることが示された.したがって,全横桁についてPC鋼材を必要本数緊張する Case4 で解析を行った.その結果,表-4⑨⑩より,横桁に発生する応力が-0.6MPa と制御されたことが示された.

表-4 応力分布図

5. まとめ

前項より,以下の2点が示された.

- i)レール桁 PC 鋼材緊張前に横桁 PC 鋼材を 必要本数緊張することが橋軸方向の応力集 中を防ぐこと.
- ii)レール桁 PC 鋼材緊張前に全横桁について PC 鋼材を緊張することが橋軸直角方向の 応力集中を防ぐこと.

以上の点を踏まえて本橋りょうの PC 鋼材緊 張順序は Case4 を採用することとした.この施 工計画により開床式スラブであっても不具合が 生じにくい PC 鋼材の緊張が可能となった.

今後は2次緊張以降についても検討を行う予定である.

【参考文献】

1)池田 浩, 金野 良:営業線近接 PC ランガー橋の施工-南多摩 PC2, 宮地技報= Miyaji technical report (27), pp.60-65, 図巻頭 pp.1, 2014.