陽的 MPS 法の圧力振動問題に関する検討

岩手大学 学生会員 〇野上経矩,正会員 小笠原敏記

1. はじめに

MPS 法は、粒子法と呼ばれる流体解析手法の一つで ある. 粒子法とは, 連続体である流体を粒子で表現する ことによって離散化し、粒子の挙動を表すための数値 計算法である. MPS 法の陽的アルゴリズムは、代入操 作のみのアルゴリズムになるので、半陰的アルゴリズ ムに比べ、容易に理解しやすいプログラムと言える.ま た, 音速の値を適切に選択することにより, 半陰的解法 に比べて高速計算が可能となる.一方で,いずれの方法 においても、圧力値が振動するという問題点がある.

そこで本研究では、陽的 MPS 法を用いて、先述した 問題について検討する.静水状態における圧力分布の 精度検証を行い、クーラン数との関係から、圧力振動を 抑制できる条件を検討する.

2. 計算手法の概要

2.1 陽的 MPS 法のアルゴリズム

MPS 法のアルゴリズムを図-1 に示す. 陽的アルゴリ ズムでは、圧力Piは以下の式(1)を用いて算出し、圧力勾 配項の計算には発散モデルを適用させる.

$$P_i = c^2 \frac{\rho_0}{n_0} (n_i - n_0) \tag{1}$$

ここで、n:粒子数密度、 ρ :流体の密度、c:音速を表 し、右下添え字の0は、粒子が等間隔に並べられている 初期時刻(t=0s)における値を表す.

図-1 MPS 法のアルゴリズム

表-1 計算条件

流体密度 $ ho$ [kg/m³]	1000
重力加速度 $g[m/s^2]$	9.8
動粘性係数[m ² /s]	1.0×10 ⁶

また、自由表面粒子の判定条件は以下の式(2)で定め、 自由表面粒子の圧力値はゼロとする.これは、負圧によ って引力が生じ、計算の発散を防ぐためである.

 $n_i < n_0$

2.2 初期形状と計算条件

静水圧試験の初期粒子配置を図-2 に示す.底面中央 の粒子を粒子 A とし、この粒子について圧力を測定す る. 表-1 は計算条件を示す. 音速cは, 流速の最大値umar とマッハ数Maを用いて、次式で算出する.

$$Ma = \frac{u_{\max}}{c} \tag{3}$$

(2)

流速の最大値umaxは、Khayyerら(2008)を参考に、水 柱の初期高さHを用いて,次式で計算することができる.

$$u_{max} = 2\sqrt{gH} \tag{4}$$

ここで, gは重力加速度である. 本試験ではH=0.60m よ り, u_{max}=4.85m/s を使用した.

3. 計算結果と考察

3.1 圧力の時間変化

図-3 は、粒子間距離l₀=1.0×10⁻²m,時間刻み幅∆t=4.1 ×10⁻⁴s における, 粒子 A の圧力の時間変化を示したも のである.Ma=0.2では,圧力振動が顕著に見られたが,

キーワード MPS 法, 粒子法, 数値計算, 圧力振動, 陽的 MPS 法 連絡先 〒020-8551 岩手県盛岡市上田4-3-5 岩手大学理工学部 togasa@iwate-u.ac.jp

図-4 クーラン数と平均圧力・標準偏差の関係

Ma=0.3, 0.7 では, 圧力振動は*Ma*=0.2 に比べて抑制されていることが確認できる.これは, マッハ数*Ma*を大きくすることで, 圧縮性の効果により, 圧力振動が抑制されたと推測される.

Ma=0.7 では、圧力の値が長周期で振動するような特 徴が見られ、振動の振幅は、Ma=0.3 に比べて大きいこ とが言える.また、Ma=0.2 では、理論値を中心に振動 しているが、Ma=0.3、0.7 では、圧力値が理論値を下回 る傾向にあり、圧力値の精度は低いと言える.

3.2 クーラン数との関係

次に、圧力分布や圧力振動に影響を及ぼすパラーメ ーターについて調べるため、時間刻み幅 Δt と粒子間距 離 l_0 を考慮した音速によるクーラン数 C_{sound} との関係 を検討する、クーラン数は、音速を用いた C_{sound} と、流 速を用いた C_{flow} があり、それぞれ以下の式(5)および式 (6)で与えられる.

$$C_{sound} = \frac{c\Delta t}{l_0} \tag{5}$$

$$C_{flow} = \frac{u_{\max} \Delta t}{l_0} \tag{6}$$

大地ら(2010)によれば,計算の安定条件として, *C_{sound}*は 1.0 未満, *C_{flow}*は 0.2 未満が適している.よって, *C_{flow}*は 0.2 未満になるように各パラメーターを設定し, 様々な条件で計算を実施した.*t*=2.0s から*t*=3.0s までの 図-5 平均圧力の鉛直分布 図-6 平均圧力の空間分布 粒子 A の圧力の時間平均値と、その標準誤差を図-4 に 示す.図-4 より、クーラン数(音速)C_{sound}が大きくなる ほど、圧力値(●)が増加する傾向にあり、理論値に近い 値となる.また、クーラン数が 0.35 程度から 0.90 程度 の間では標準偏差(×)が小さくなり、圧力振動が抑制さ れていることがわかる.

この結果を踏まえて、図-5 および図-6 に、 $l_0=1.0\times$ 10⁻²m 、 $\Delta t = 4.1 \times 10^{-4}$ s 、 Ma = 0.4($C_{sound} = 0.497$ / $C_{flow}=0.199$)におけるt=2.0-3.0s の時間平均の圧力分布 を示す.水深の 1/3 程度より浅いところでは理論値と良 好な一致が見られたが、深いところでは理論値とのず れが大きく精度が悪いことが言える.この要因として、 図-6 より、隅角部の圧力の計算に問題があると推察さ れる.精度向上には隅角部の改善が必要であり、今後の 課題である.

参考文献

- A. Khayyer , H. Gotoh , S. D. Shao: Corrected incompressible SPH method for accurate water-surface tracking in breaking waves, Coastal Eng. 55, 236-250, 2008
- 大地雅俊,越塚誠一,酒井幹夫:自由表面流れ解析 のための MPS 陽的アルゴリズムの開発,日本計算 工学会論文集, No.20100013, 2010