LES による海岸砂丘周辺の風場解析

東北大学工学部建築・社会環境工学科 学生会員 ○佐野柊輔 東北大学災害科学国際研究所准教授 正会員 有働恵子

1. はじめに

海岸砂丘は,豊富な生態系を持っており,内陸への飛砂 や津波などの災害リスクを軽減させる自然堤防としての 役割を果たしている.しかしながら茨城県の鹿島砂丘で は、人工的につくられた直線状の砂丘が風の影響によっ て背後から削られ,数十年で 100m ごとの小さな砂丘に 分裂されていることが示されている(Udo et al., 2003). こ のような砂丘の分裂は、堤防のもつ機能を損ない、飛砂や 津波,高潮の災害リスクが増大する恐れがある.砂丘の分 裂メカニズムを解明することが、人工砂丘の維持管理に 重要である.

風況の数値解析には、RANS(Reynols Averaged Navier-Stokes)もしくはLES(Large Eddy Simulation)を用いるこ とが多い、空間平均場を計算する LES に比べ、時間平均 場を解く RANS のほうが計算負荷は小さいが、複雑な流 れや小さな渦は考慮しない. 今回の分裂メカニズムの解 析にはLES が適している(栗林, 2017).

砂丘に対して垂直に流入した風は、後流ではコヒーレ ント構造をとることが知られている(Schewe, 2001). 砂丘 の分裂とコヒーレント構造の周期性に関連があると考え, 本研究では、茨城県の鹿島砂丘について斜めから流入す る風に関して、LES による数値解析を行い、風況特性を 明らかにすることを目的とする.

2. 計算手法

今回の風場の数値計算には LES を基礎とした OpenFOAM(オープンソース)を用いた. 乱流場において フィルターをかけることによってメッシュサイズより大 きい渦(GS:グリッドスケール)とそれより小さい渦 (SGS:サブグリッドスケール)に分け, GS は直接計算し SGS は渦の影響をモデル化する.以下の連続式とナビエ・ ストークス方程式を支配方程式とする.

$$\frac{\partial \overline{u}_i}{\partial x_i} = 0 \tag{1}$$

$$\frac{\partial \bar{u}_i}{\partial t} + \bar{u}_j \frac{\partial \bar{u}_i}{\partial x_j} = -\frac{1}{\rho} \frac{\partial \bar{P}}{\partial x_i} + \nu \frac{\partial^2 \bar{u}_i}{\partial x_i \partial x_j} - \frac{\partial \tau_{ij}}{\partial x_j}$$
(2)

ここで、 ū, は平均速度、 u' は速度変動成分、 p は平均圧力、 ρ は空気密度、 ν は空気動粘度である. τ_{ii} は残余の応力で、 SGS の影響を表す. τ_{ii}は以下のスマゴリンスキーモデル によりモデル化する.

$$\tau_{ij} = \frac{1}{3} \overline{u'_k u'_k} \delta_{ij} - 2\nu_{SGS} \overline{\mathcal{S}_{ij}}$$
(3)

$$\overline{S_{ij}} = \frac{1}{2} \left(\frac{\partial \overline{u}_i}{\partial x_j} + \frac{\partial \overline{u}_j}{\partial x_i} \right)$$
(4)

$$\nu_{SGS} = (C_s f_s \Delta)^2 |S| \tag{5}$$

$$f_s = 1 - \exp\left(-\frac{z^+}{25}\right) \tag{6}$$

$$z^+ = \frac{zu_*}{\nu} \tag{7}$$

ここで、 δ_{ii} :クロネッカーのデルタ、 $\overline{S_{ii}}$:変形速度テン ソルの GS 成分, ν_{scs} : SGS 渦粘性係数, f_s :特性長さ, u_* :摩擦速度, C_s :モデル定数, Δ :メッシュ幅である.

衣I	司异禾叶

OpenFOAM	
LES 標準 Smagorinsky モデル	
主流方向 4.5~6.0m×直行方向 3.6m×	
鉛直方向 2.0m	
水平方向:2.5×10 ⁻² ~0.1(m)	
鉛直方向: 5.0×10 ⁻³ ~0.1(m)	
$\Delta t = 2.5 \times 10^{-4}$ (s)	
滑り条件	
粘着条件	
3.0 (m/s)	
砂丘に対して 90°, 67.5°, 45°	
$3.0 imes 10^{-4}$	
(模型高さを代表長さとしたとき)	

図1 砂丘模型

3. 結果と考察

地表から 5mm について,砂丘に対して 90°に流入 した場合の風速分布を以下の図 3,流線を図 4 に示し た.90°の場合には砂丘越流後の風向が流入風と逆向 きになる部分があり,さらに後方は一様ではなく,束 になって流れているように見える.砂丘沿い方向の変 化を見ても,砂丘近辺でキノコ型の渦が発生している ことが分かる.つまりコヒーレント構造が卓越してい る.ここで 67.5°について図 5,6を見ると,後流の周 期的な流れは弱まっており,砂丘沿いを通るらせん渦 構造が発達しているのが分かる.

45°について図7,8をみると,後流は流入風向から 大きく外れ,67.5°で発生したらせん渦構造が卓越し た.この場合,地面付近を流れる風は,砂丘斜面によ って斜めに上昇し,砂丘を越えてから砂丘下方にずれ ていく.この時流れは分散せずに,一様ならせん渦と して形成される.砂丘頂部の風速が大きいのに対し, 後流中の風速は小さくなる.

図3 砂丘に対して90°に流入した時の風速分布の絶対値(左上), x軸;流入風向成分(右上), y軸;風向垂直方向成分(左下), z軸;鉛直方向成分(右下)

図4 砂丘に対して90°に流入した時の流線

図 5 砂丘に対して 67.5°に流入した時の風速分布の絶対値(左上), x軸;流入風向成分(右上), y軸;風向垂直方向成分(左下), z 軸;鉛直方向成分(右下)

図6 砂丘に対して 67.5°に流入した時の流線

図7 砂丘に対して45°に流入した時の風速分布の絶対値(左上), x 軸;流入風向成分(右上), y 軸;風向垂直方向成分(左下), z 軸;

鉛直方向成分(右下) 図8 砂丘に対して45°に流入した時の流線

4. 結論

砂丘頂部の流速は、流入風向が砂丘に対して垂直に 近いほど大きくなる.またこの時、後流中はコヒーレ ント構造が卓越している.流入風向が斜めになるにつ れ、越流後の砂丘下方に向かう流れが大きくなり、ら せん渦が発生し始める.流入風向が砂丘に対して 45° 付近ではコヒーレント構造は完全に消え、らせん渦構 造が卓越した流れになる.

参考文献

- Schewe, G.:Reynols-number effects in flow around more-or-less bluff bodies, Journal of wind Engineering and Industrial Aerodynamics, 89, 1267-1289, 2001.
- Liu, B., Qu, J., Zhang, W., Qian, G.:Numerical simulation of wind flow over transverse and pyramid dunes, Journal of Wind Engineering and Industrial Aerodynamics, 99, 879-888, 2011.
- Tsubasa Kuribayasi, Keiko Udo and Takanori Uchida: Characteristics of Wind over an artificial straight dune at Kashima coast, Japan, Coastal Dynamics, Paper No.073, 2017