瀬戸石調整池における粒径区分別浮遊砂濃度の鉛直分布の観測と **Rouse** 分布の適用

1. まえがき

流砂はその移動形態によって掃流砂,浮遊砂(ウォッ シュロードを含む,以下同じ)に区分される.洪水時の 観測は通常に採水によって行われるが,浮遊砂は鉛直方 向に濃度分布を有するので,表面付近の採水だけでは細 砂~粗砂の観測は難しい.本研究では古川ら^{1),2)}が開発 し,実証試験を進めている超音波減衰スペクトル計によ る浮遊砂観測に適用する Rouse 分布を検証するため,瀬 戸石調整池において粒径区分別濃度の鉛直分布を観測す るとともに Rouse 分布の適用について考察する.

2. 浮遊砂の観測

(1) 浮遊砂輸送量

単位時間当たり浮遊砂輸送量 Q_s は次式で与えられる.

$$Q_s = \sum_{j=1}^m q_j, \quad q_j = L \sum_{y=a}^h u(y) C_j(y) dy \Delta t \tag{1}$$

ここで、 q_j は粒径階級 jの浮遊砂輸送量、mは粒径階級 の総数、Lは河川幅、hは水深、aは河床から基準面ま での高さ、u(y)は河床からの距離 y での流速、 $C_j(y)$ は河 床からの距離 y での粒径階級 jの濃度である.

(2) 浮遊砂観測

観測地点は瀬戸石ダム(球磨川)から280m上流の断面変化の少ない直線河道区間を選定した.観測地点の横断面と取水位置を図-1に示す.観測期間中の瀬戸石ダムのハイドログラフを図-2に示す.また,図-3にガラス繊維濾紙法による浮遊砂濃度の観測結果を,図-4にレーザ法による浮遊砂の粒度分布の観測結果の一例を示す.濃度と粒度は水深に依存して変化する.EL.42mの浮遊砂濃度(C₄₂)はEL.36mの濃度(C₃₆)の約80%であり,また,EL.42mの粒度はEL.36mのものより粒径が小さい.

(3) 水理量の計算

表-1 に水理量の計算例 (9 月 22 日 13 時) を示す.水位 *H* は瀬戸石ダム水位,流量 *Q* は瀬戸石ダム放流量(時 間平均値),平均流速 Ū は *Q*/*A* である.エネルギー勾 配 *I* は粗度係数 *n* = 0.038 を用いてマニングの平均流速 公式から求めた.

$$I = \left(\frac{\bar{U} \cdot n}{R^{2/3}}\right)^2 \tag{2}$$

日本大学工学部

電源開発

正会員

正会員

○古川仁志

奥村 裕史

(4) 粒径区分別濃度

表-2 に粒径区分別濃度の観測例を示す. 粒径階級 jの 粒径区分別濃度 C_jの観測値は次式で算出した.

$$C_j = C \cdot g(d_j) \Delta x \tag{3}$$

ここで、C は浮遊砂濃度、 $g(d_j)\Delta x$ は粒径階級 j の粒子の体積比率である.

3. 考察

等流・乱流状態にある流れの場合,浮遊砂の濃度分布 式は基準点 y = a における濃度を $C = C_a$ とすると,次

Key Words: 浮遊砂, 粒径区分別濃度, Rouse 数, 球磨川

連絡先 〒 274-0073 千葉県船橋市田喜野井 6-33-1-405 流砂観測技術研究所 E-mail furukawa.hitoshi@nihon-u.ac.jp

表-1 水理量の計算結果 (2019/09/22/13:00)

水位	流量	流積	水面幅	潤辺長	径深	平均流速	水深	エネルギー勾配	摩擦速度
H[EL.m]	$Q[m^3]$	$A [m^2]$	<i>L</i> [m]	<i>S</i> [m]	<i>R</i> [m]	\overline{U} [m·s ⁻¹]	<i>h</i> [m]	Ι	$u_{\star} [\text{m} \cdot \text{s}^{-1}]$
48.40	462.6	1173.7	89.35	104.15	11.27	0.394	15.8	8.87×10^{-6}	0.0371

表-2 粒径区分別浮遊砂濃度と Rouse 数 (2019/09/22/13:00)

粒径階級	粒径範囲	平均粒径 C ₃₆		C ₄₂		沈降速度		Rouse 数
j	[mm]	d_j [mm]	$C_j[\text{kg}\cdot\text{m}^{-3}]$	$C_j[\text{kg}\cdot\text{m}^{-3}]$	δd_j	$\omega_f[\text{m}\cdot\text{s}^{-1}]$	$\omega_f u_{\star}^{-1}$	Ζ
1	$2.000 \ge d > 1.000$	1.414	0.000	0.000	0.9899	0.095824	2.585278	6.463195
2	$1.000 \ge d > 0.500$	0.707	0.001	0.001	0.4950	0.060785	1.639953	4.099883
3	$0.500 \ge d > 0.250$	0.354	0.002	0.002	0.2475	0.032049	0.864675	2.161686
4	$0.250 \ge d > 0.125$	0.177	0.005	0.004	0.1237	0.011847	0.319615	0.799038
5	$0.125 \ge d > 0.063$	0.0884	0.014	0.012	0.0619	0.003267	0.088149	0.220372
6	$0.063 \ge d > 0.032$	0.0442	0.026	0.025	0.0309	0.000829	0.022359	0.055899
7	$0.032 \ge d > 0.016$	0.0221	0.040	0.039	0.0155	0.000208	0.005600	0.014001
8	$0.016 \ge d > 0.008$	0.0110	0.040	0.041	0.0077	0.000052	0.001400	0.003501
9	$0.008 \ge d > 0.004$	0.00552	0.028	0.030	0.0039	0.000013	0.000350	0.000875
10	$0.004 \ge d > 0.002$	0.00276	0.015	0.016	0.0019	0.000003	0.000088	0.000219
11	$0.002 \ge d > 0.001$	0.00138	0.007	0.007	0.0010	0.000001	0.000022	0.000055
12	$0.001 \ge d > 0.0005$	0.00069	0.005	0.005	0.0005	0.000000	0.000005	0.000014
13	$0.0005 \ge d$	0.00035	0.001	0.001	0.0002	0.000000	0.000001	0.000003
計			0.184	0.159				

式で与えられる.

$$\frac{C(y)}{C_a} = \left(\frac{h-y}{y}\frac{a}{h-a}\right)^Z, \quad Z = \frac{\omega_f}{\beta\kappa u_\star}$$
(4)

ここで、C(y) は浮遊砂濃度、y は河床からの距離、h は 水深、a は河床から浮遊砂濃度の基準点までの高さであ る. Z は Rouse 数、 ω_f は粒子の沈降速度、 κ は Kármán 定数 ($\kappa \approx 0.4$)、 β は砂の拡散係数と渦動粘性係数との 比で $\beta = 1.2$ 程度にとられる. $u_{\star}(=\sqrt{ghI})$ は摩擦速度で ある. 沈降速度 ω_f は Rubey の実験式から求める.

$$\frac{\omega_f}{\sqrt{sg(\delta d)}} = \sqrt{\frac{2}{3} + \frac{36v^2}{sg(\delta d)^3}} - \sqrt{\frac{36v^2}{sg(\delta d)^3}}$$
(5)

ここで、vは水の動粘性係数、sは砂粒子の水中比重、dは砂粒子の粒径、 δ は補正係数、gは重力加速度である.

EL.36mとEL.42mの粒径区分別濃度の観測値および Rouse 分布による計算値を図-5 に示す. Rouse 分布は $h = 15.8 \text{ m}, a = 0.3 \text{ m}, \delta = 0.7$ を用いて求めた. Rouse 数の計算結果を表-2に示す、浮遊砂の観測では、濃度 の鉛直方向の変化が大きい粒径階級 j=1~5の粒子の 濃度分布が重要であり, Rouse 数はこれらの観測データ から決定する必要がある. 粒径階級 i=3の砂粒子1個 の重量 w は砂粒子の密度を 2.65 g·cm⁻³ とすると 0.5 mg であり、サンプルの必要量を粒子10個以上とすると約 5 mg となる.これを1ℓの採水量で確保する場合,粒径 区分別濃度は $5 \operatorname{mg} \ell^{-1} = 0.005 \operatorname{kg} \operatorname{m}^{-3}$ 以上必要であるが、 図-5 に示す濃度はこれに達していない. したがって粒 径階級 *j* = 1 ~ 3 の測定値から最適な適切な Rouse 数を 決定することは難しいため、粒径階級 j=4~6の粒径 区分別濃度の測定値にフィットするラウス数 (補正係数 *δ*)を決定した.

図-5 粒径区分別濃度の鉛直分布

4. 結論

本研究で得られた知見は以下のとおりである. 浮遊砂 輸送量を観測するためには, 浮遊砂濃度の鉛直分布を測 定する必要があり, 観測値にフィットする Rouse 数を決 定する方法として, 粒径補正係数を導入する方法を提案 した. 今回の観測では浮遊砂濃度が 0.2 kg·m^{-3} 程度であ り, 粒径 $d \ge 0.25 \text{ mm}$ では正確な濃度の測定ができない ため, $0.032 < d \le 0.25 \text{ mm}$ の粒径区分別濃度の測定値 から Rouse 数を決定した. Rouse 数はより高濃度の観測 値から決定することが望ましい.

参考文献

- 古川仁志,福重裕史,河下重和,朝岡良浩,長林久夫:フ ローセル型超音波減衰スペクトル計による洪水時の粒径 区分別土砂輸送量の連続観測.河川技術論文集.第25巻, pp.163-168, 2019.
- 古川仁志,福重裕史,奥村裕史,朝岡良浩,長林久夫:球 磨川・瀬戸石ダムの通砂/排砂運用期間中の粒径区分 別浮遊砂輸送量の観測.土木学会論文集 B1(水工学). Vol.75,No.2,pp.I 853-I 858, 2019.