降雨と地震動を考慮した広域斜面安定解析

○東北大学工学部建築・社会環境工学科	学生会員	藤田 真粹
東北大学災害科学国際研究所	正会員	森口 周二
東北大学災害科学国際研究所	正会員	寺田 賢二郎
東北大学大学院工学研究科	正会員	京谷 孝史

1. はじめに

我が国では、地震や豪雨による土砂災害が毎年のように 発生している. それらのハザードを考慮して広域の斜面安 定度を評価する試みは前例があるものの,未だ発展途上と いうのが現状である.本研究では、広域地形情報に基づい て斜面の安定解析を行い、複数斜面の安定性と崩壊時の土 量を算出する手法を開発する.また,実際の災害事例を対 象として,手法の妥当性を検討する.

地形表現

本研究では、地形を正方形メッシュにより表現し、すべり 体を角柱に分割してそれぞれ滑動力と抵抗力の合計値の比 により安全率を算出する.地形情報は国土地理院の数値標 高モデルを用いた.地盤内の地層構造や地下水位の情報も 入力可能であり,これらは対象とする地域の土質調査結果 や地質図などから決定される.

3. 斜面安定解析手法

3.1 対象斜面の抽出とすべり面の仮定

広域の地形で解析を行う場合,計算量削減のため解析対 象となる斜面を抽出する必要がある.本研究では、斜面の 平均傾斜角によって対象・非対象を区別する. すべり面は 楕円体の楕心位置,大きさを変更しながら安定計算を行う ことにより、様々な崩壊形態を検討する. このとき、すべり 面が基盤内に存在する場合には、 すべり面を基盤面とする 表層崩壊と仮定して安全率の計算を行う.

3.2 安全率の計算

本研究では高田¹⁾と同様に, Hovland 法²⁾を基礎として 滑動力 S と抵抗力 O をベクトルのまま扱って安全率を算出 する.地下水位の影響については、表層厚に対して占める 割合を変化させ,随時解析を行うことにより降雨に伴う地 下水上昇を表現する.また,地震動を考慮するために設計 水平震度 k を xy 平面上のベクトルとして導入する. 設計水 平震度 k の方向は計算対象とする要素の勾配方向とし、各 土柱の重量に設計水平震度 k を乗じることにより水平方向 に地震動による力が働いている状態を表現する.以上を踏 まえて次式により各土柱の滑動力と抵抗力を算出する.

$$\boldsymbol{Q}_{i} = \left[cA_{i} + \left\{ \boldsymbol{n}_{i} \cdot \left(\boldsymbol{e}_{g} + \boldsymbol{k} \right) (W_{i} - W_{Wi}) \right\} \tan \phi \right] \boldsymbol{t}_{i} \qquad (1)$$

$$\boldsymbol{S}_{i} = -\left[\left\{\boldsymbol{t}_{i} \cdot \left(\boldsymbol{e}_{g} + \boldsymbol{k}\right)\right\} W_{i}\right] \boldsymbol{t}_{i}$$
⁽²⁾

ここで下付き添え字 i は各土柱の値であることを示し, A は すべり面の面積,Wは土柱重量,Ww は土柱内の地下水重 量, n,t はそれぞれすべり面に平行, 垂直方向の単位ベクト ル, e_g は鉛直下向きの単位ベクトル, c, ϕ は土の粘着力と内 部摩擦角である.それぞれ合力を全体の滑動力 S と抵抗力 Qとし, 滑動力方向について比をとることにより安全率を 算出する.

$$F = \frac{-\boldsymbol{Q} \cdot (\boldsymbol{S} / \|\boldsymbol{S}\|)}{\|\boldsymbol{S}\|}$$
(3)

4. 実斜面への適用

2018 年北海道胆振東部地震により広域で斜面崩壊が多発 した北海道厚真町 10km 四方の範囲について解析を行った. 地形は,要素長 5m の正方形メッシュを用いて表現し,表層 厚は 6m とした.図1 に対象とする地形図と国土地理院³⁾ が抽出した北海道胆振東部地震による斜面崩壊位置を示す.

対象地域について地震や地下水の有無を考慮し解析を行 い,各要素における最小の安全率を色分けして表示する. 地震時の安定性について気象庁⁴⁾による北海道厚真町字 京町の地動加速度データから水平方向の最大加速度である 395.7gal を対象地域の加速度最大値とし、設計水平震度の

大きさを野田 5) が提案した以下の式により算出する.

$$|\mathbf{k}| = \frac{1}{3} \left(\frac{a}{g}\right)^{1/3} \tag{4}$$

ここで, a は地表面加速度の最大値であり 395.7gal, g は重 力加速度であり 980gal, これらより $|\mathbf{k}| \approx 0.25$ となる.地 震,地下水ともに考慮せずに解析を行った結果が 図 2 であ り,設計水平震度を与えた解析結果が図 3 である.地震の 影響を考慮することにより全体的に安全率が低下している ことが確認でき,図 1 で示した実際の崩壊箇所分布ともあ る程度整合がとれている.他方,図 4 は地下水位を地表面 と同じ高さに設定した場合の結果である.この結果より,地 下水に関しても,地震時と同様に安全率の低下がみられる. 降雨と地震両方の影響を考慮した解析結果が図 5 である.

図-3 地震時時安全率(設計水平震度 0.25)

5. まとめ

本研究では広域地形に対して地震や降雨,またはその両 方を考慮して3次元斜面安定性を評価する手法を構築した. また,実地形に対して提案手法を適用し,地震または降雨に よって斜面崩壊危険性が増すことや,複数の対象斜面につ いて安全率と実際の崩壊形態がある程度整合することを確 認した.しかし局所的には実被害と計算結果の間にズレが 生じている箇所もあり,今後さらなる検討が必要である.

参考文献

- 1) 高田 優,岸野 佑次:三次元数値地形データを利用した斜面 安定解析システムの実斜面への適用,2005.
- Hovland, H. J., Three-dimensional slope stability analysis method, J. Geotech. Engrg. Div., 103(9), 971-986, 1977.
- 3) 国土地理院:平成 30 年 (2018 年) 北海道胆振東部 地震に関する情報 https://www.gsi.go.jp/BOUSAI/ H30-hokkaidoiburi-east-earthquake-index.html#10
- 4)気象庁:強震波形(胆振中東部の地震) https://www.data.jma.go.jp/svd/eqev/data/kyoshin/jishin/1809060307_hokkaido-iburi-tobu/index.html
- 5) 野田節男, 上部達生, 千葉忠樹: 重力式岸壁の震度と地盤加速 度, 港湾空港技術研究所報告 Vol.14, No.4, 1975.