固液混合 MPM による地盤の浸透破壊解析

○東北大学工学部建築・社会環境工学科	学生会員	飛彈野 壮真
東北大学 災害科学国際研究所	正会員(個人)	山口 裕矢
八戸工業大学 土木建築工学科	正会員(個人)	金子 賢治
八戸工業大学 土木建築工学科	正会員(個人)	高瀬 慎介
東北大学 災害科学国際研究所	正会員(個人)	森口 周二
東北大学 災害科学国際研究所	正会員(個人)	寺田 賢二郎

1. 研究背景と目的

雨が多く山地が地形の多くを占める我が国は、斜面が雨の浸透で崩れやすくなり、斜面災害が発生しやすい環境にある。このような斜面災害を予測するためには、浸透・破壊・流動を一貫してモデル化する必要があるが、そのためには土の間隙内に含まれる水、空気も考慮した不飽和土の力学特性を加味したうえで、固体と流体を統一的に扱う必要がある。

以上から、不飽和土の力学特性の変化を考慮した斜面の 浸透崩壊から土砂流動までの一連の現象の再現に適用しう る手法として表現性能が期待される混合体 MPM に着目し、 その表現性能を検証することを目的とする.

2. 支配方程式

以下では混合体モデルに基づく各種保存式の概要を記す. 詳細なモデル化は文献¹⁾を参照されたい.混合体の密度は 次式のように各相の密度(部分密度)の総和で表される.

$$\rho = \rho_{\rm s} + \rho_{\rm w} + \rho_{\rm a} \tag{1}$$

ここで、 ρ_{α} は部分密度、添え字 s, w, a は各々土骨格、水、空気の物理量を示す。各相の質量保存式は次式で表される。

$$\frac{D^{\alpha}\rho_{\alpha}}{Dt} + \rho_{\alpha}\nabla \cdot \boldsymbol{v}_{\alpha} = 0, \quad \alpha = s, w, a$$
 (2)

ここで、 v_{α} は各相の速度であり、 $\frac{D^{\alpha}}{Dt}$ は各相を参照した物質時間微分である.

次に, 各相の運動方程式は次式である.

$$\rho \boldsymbol{a}_{\alpha} = \nabla \cdot \boldsymbol{\sigma}_{\alpha} - \rho_{\alpha} \boldsymbol{b}_{\alpha} - \hat{\boldsymbol{p}}_{\alpha}, \quad \alpha = s, w, a$$
 (3)

ここに, \pmb{a}_{α} は加速度, $\pmb{\sigma}_{\alpha}$ は平均 Cauchy 応力, \pmb{b}_{α} は物体力, $\hat{\pmb{p}}_{\alpha}$ は相間の相互作用力である.

3. 浸透流出解析の検証

3.1 検証の概要

本研究で用いる手法による浸透解析結果の検証のため、ベンチマークとしてよく知られる Liakopoulos²⁾ が行った実験 との比較を行った.実験は、不浸透性の円筒形容器を飽和土で満たし、底面と天面を透水条件とすることで、一次元の流れと変形を引き起こすものである.この時の底面から流出する水の流速を測ったデータとの比較を行った.

3.2 浸透流出解析結果の検証

図-1 に実験、解析結果である底面の液相流速の時刻歴を示す。図から、3 相解析の結果が、2 相解析と比較すると実験結果に近いことから、空気を考慮することでより実現象に近い解析ができると言える。経過時間が 30 分に満たない領域では 3 相解析でも実験結果との差が見受けられるが、それ以降の領域では特によく一致していることがわかる。ただし、2 相解析でも、流出する水の速度のオーダーには大きな差はなく、徐々に速度が小さくなる傾向は表現できていることから、計算コストを考慮し、以降の解析は 2 相で行う。

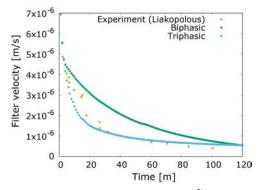


図-1 浸透流出に関する実験結果 (Liakopoulos²⁾) と Biphasic (土・水) 解析結果と Triphasic (土・水・空気) 解析結果の比較

4. 再現解析

4.1 浸透解析の概要

実験では概ね斜面全体が飽和した段階で崩壊が発生しているため、計算コストを考慮し、MPMを用いた浸透に関する山口ら³⁾の研究を用いて、浸透過程の解析を行った.

4.2 内部摩擦角による影響

まず,既往研究により飽和度の上昇によって有効な粘着力は減少するが,内部摩擦角は変化が小さいことが示されている ⁴⁾ ため,飽和させた斜面について,内部摩擦角を 30度,35度,40度と設定し,崩壊の解析を行うことで,適した内部摩擦角を定める.

図-2 上部は、解析開始から 180s 後の斜面形状である. また,水色の線は実験の最終斜面形状である. 図より内部摩擦角が大きいほど崩壊が進みにくいとがわかる. それに伴い,上部に崩れずに残留する箇所が多い. しかし,崩壊が進行

Key Words: MPM, 不飽和土, 浸透崩壞, 斜面崩壞

すれば、内部摩擦角 30 度の斜面同様到達範囲が大きくなる と予想できる. そこで, 内部摩擦角 40 度の斜面で 600s ま で解析を行った. 結果は図-2下部に示す. 図から, 180sで の形状と比べて斜面が崩れていることがわかるので、十分 な時間が経過すれば実験の斜面により近づくと考えられる.

したがって, 以降の解析では上部に残っている箇所がより 多いため,十分な時間が経過すれば実験の崩壊形状に最も 近づくと考えられる内部摩擦角40度を用いることとする.

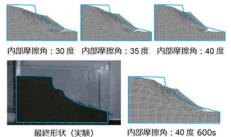
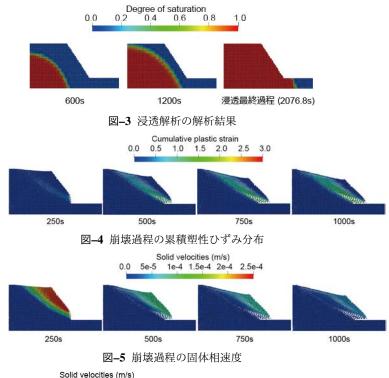


図-2 内部摩擦角による影響の比較(上部3斜面)と内部摩擦角40 度とした 600s での崩壊形状の比較(下部)

4.3 浸透から崩壊までの解析


内部摩擦角を 40 度とし,山口らの研究 3) を用いて浸透過 程の解析を行った結果を図-3に示す.この結果を用いて崩 壊の解析を行った結果を示す(累積塑性ひずみ分布は図-4, 固体相速度は図-5). 図-4 から 500s 付近ですべり面がはっ きりと表れ,以降より明確になっていることがわかる.ま た、図-5から250s以降の崩壊の進行は緩慢であることがわ かる. しかし, 徐々にではあるが崩壊が進行しているため完 全に止まるまで解析を行うことは困難である. そこで, 固 体相速度から最終形状の概形を予想できると考える. 1000s での固体相速度について図-6に改めて示す.この図の領域 1はこのままの形状を保つと考えるられ特に速度が小さい 領域, 領域2は領域1の斜面外側の斜面崩壊が進行し形成 されると考えられる領域である. これらの領域の外縁(破 線)が解析での斜面の最終形状と考えられる. これを実験 の最終形状に重ねたものを図-6の右側に示す。実験につい ても、領域3として示す角ばった不安定な領域(水色の実 線で囲った領域)が存在し、崩壊が続くことが予想できる. また、領域3が崩れると、水色の破線上に堆積していくと 考えられるため, 予想した解析斜面での最終形状 (橙色の破 線)に近づくと考えられる.

5. 結論

不飽和土の複雑な力学特性の変化を考慮した斜面の浸透 崩壊から土砂流動までの一連の現象再現への適用が期待さ れる混合体 MPM に着目し、表現性能を検証した.

浸透流出解析による検証は2相でも十分な浸透を表現で き,3相であれば30分以降は実現象との差がないほどの精 度があった.

対象とした実験の形状を表現するには内部摩擦角が大き い必要があることがわかり、内部摩擦角 40 度の斜面を用い て浸透から崩壊までの解析を行った. 実験, 解析ともに崩 壊が止まるまでには長い時間が必要であり, 固体相速度か ら予想される最終形状は実験で得られるであろう最終形状 に近いものと考えられることを確認した.

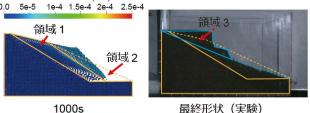


図-6 予想される実験、解析結果の最終形状の比較

参考文献

- 1) Bandara, S., Ferrari, A. and Laloui, L.: Modelling landslides in unsaturated slopes subjected to rainfall infiltration using material point method, International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 40, No. 9, pp. 1358-1380, 2016.
- 2) A., L.: Transient flow through unsaturated porous media., PhD thesis, University of California at Berkeley, 1964.
- 3) 山口裕矢, 高瀬慎介, 森口周二, 寺田賢二郎: 地盤流動化の数 値解析を目的とした MPM の提案と適用性の検討, 計算工学 講演会論文集 Proceedings of the Conference on Computational Engineering and Science, Vol. 24, p. 3p, may 2019.
- 4) Fredlund, D. G., Morgenstern, N. R. and Widger, R. A.: The shear strength of unsaturated soils, Canadian Geotechnical Journal, Vol. 15, No. 3, pp. 313-321, 1978.