有限変形弾塑性構成則の陰的・陽的近似による 応力計算の精度検証

東北大学工学部建築・社会環境工学科	学生会員	○町島	智大
東北大学大学院工学研究科	学生会員	井口	拓哉
東北大学大学院工学研究科	正会員	山川	優樹
東北大学大学院工学研究科	フェロー会員	池田	清宏

1. はじめに

地盤材料の変形挙動を精緻に再現可能な高度な弾塑性構 成モデルの開発が進んでいる.陰的差分近似に基づくリター ンマッピング・アルゴリズムを用いることにより,高精度 の応力計算が可能となる反面,非線形連立方程式の反復収 束計算が必要となる.また,変形勾配テンソルの乗算分解 に基づく有限変形弾塑性構成則の場合には,塑性流動則の 時間積分の際にテンソル指数関数を級数表示して収束計算 を行う必要がある.このように,高度な構成則の高精度応 力計算には大きな計算コストを伴う.しかし一方で,繰返 し変形解析など多数の増分ステップでの解析が必要となる 場合,計算コストの低減が必要とされてきている.

このことを受けて、リターンマッピング・アルゴリズム において計算量の大きな負担となっている塑性発展則の時 間積分における近似法に着目し、計算コストの低減を試み る.本研究では、時間積分においてテンソル指数関数を用 いた計算方法と、テンソル指数関数の高次項を省略した場 合のそれぞれについて、近似精度及び計算コストについて 比較・検証する.

有限変形・回転硬化下負荷面 Cam-clay モ デル

(1) 変形勾配テンソルの乗算分解に基づく諸量の定義

全変形勾配 F を弾性部分・塑性部分への乗算分解を仮定 し、さらに F^{p} をエネルギー貯蓄部分である $F^{P_{e}}$ とエネル ギー消散部分である $F^{P_{d}}$ に乗算分解を行う.

$$\boldsymbol{F} = \boldsymbol{F}^{e} \boldsymbol{F}^{p}, \quad \boldsymbol{F}^{p} = \boldsymbol{F}^{p_{e}} \boldsymbol{F}^{p_{d}}, \quad (1)$$

上式の乗算分解により,基準配置 \mathcal{K}_0 と現配置 \mathcal{K} に加え, 中間配置 $\bar{\mathcal{K}}$ と配置 $\hat{\mathcal{K}}$, $\hat{\mathcal{K}}$ を新たに導入する.その配置の関 係図を図–1 に示す.

図—1 各配置の関係図

(2) 構成式

本論文では、山川ら¹⁾の提案した超弾性モデルを用いる. 超弾性ポテンシャル関数は2不変量を含むものを用い、そ れを変形変数で微分することで第 2Piola–KIrchhoff 応力 \bar{S} を得る.

$$\mathcal{W}^{\mathrm{e}}(\bar{\boldsymbol{C}}^{\mathrm{e}}) = \bar{\mathcal{W}}^{\mathrm{e}}(J^{\mathrm{e}}) + \hat{\mathcal{W}}^{\mathrm{e}}(J^{\mathrm{e}}, \bar{\boldsymbol{C}}^{\mathrm{e}}_{\mathrm{dis}})$$
(2)

$$=2\frac{\partial \mathcal{W}^{\rm e}(\boldsymbol{C}^{\rm e})}{\partial \bar{\boldsymbol{C}}^{\rm e}} \tag{3}$$

ここで、弾性体積変化を $J^{e} := \det \mathbf{F}^{e} = (\det \bar{\mathbf{C}}^{e})^{1/2}$ とし ており、 $\bar{\mathbf{C}}^{e}$ の等積成分 $\bar{\mathbf{C}}^{e}_{dis} = (J^{e})^{(-2/3)} \bar{\mathbf{C}}^{e}$ を用いている.

(3) 中間配置 *応* を参照する下負荷面関数

 $ar{S}$

中間配置 $\bar{\mathcal{K}}$ を参照する Mandel 応力 $\bar{M} := \bar{C}^{e} \bar{S}$ を用い て修正応力 \bar{M}_{mod} を以下のように定義する.

$$\bar{\boldsymbol{M}}_{\text{mod}} =: \bar{\boldsymbol{M}} - (-\bar{\boldsymbol{P}} + P_{\text{t}})\bar{\boldsymbol{M}}_{\text{dev}}^{\text{rot}}$$
(4)

また,中間配置 $\bar{\mathcal{L}}$ を参照する修正応力 \bar{M}^{mod} の3不変量 $\bar{P}^{\text{mod}}, \bar{Q}^{\text{mod}}, \bar{\Theta}^{\text{mod}}$ を用いた \bar{M}^{rot} の下負荷面関数fの定 義を以下に示す.

$$f(\bar{M}, \bar{M}^{\text{rot}}, P_{\text{c}}, R) := \sqrt{\frac{(\bar{Q}^{\text{mod}})^{2}}{\{M(\bar{\Theta}^{\text{mod}})\}^{2} - c(\bar{\eta}^{\text{rot}})^{2}} + \left[\bar{P}^{\text{mod}} - \left\{\left(1 - \frac{R}{2}\right)P_{\text{t}} + \frac{R}{2}P_{\text{c}}\right\}\right]^{2}} - \frac{R}{2}(P_{\text{t}} - P_{\text{c}})$$
(5)

(4) 塑性発展則

塑性変形勾配テンソル F^{p} の発展則は塑性速度勾配テン ソル \overline{L}^{p} を用いて次の第1式で与えられ、これを陰的近似 により時間区間 $[t_{n}, t_{n+1}]$ で時間積分することにより第2式 を得る.

$$\dot{\boldsymbol{F}}^{\mathrm{p}} = \bar{\boldsymbol{L}}^{\mathrm{p}} \boldsymbol{F}^{\mathrm{p}} \rightsquigarrow \boldsymbol{F}_{n+1}^{p} = \exp[\bar{\boldsymbol{L}}_{n+1}^{p} \Delta t] \boldsymbol{F}_{n}^{p} \qquad (6)$$

ここで、テンソル指数関数 Z は無限級数表示で表される.

$$\exp \mathbf{Z} = \sum_{k=0}^{\infty} \frac{1}{k!} \mathbf{Z}^{k} = \mathbf{I} + \mathbf{Z} + \frac{1}{2} \mathbf{Z}^{2} + \frac{1}{6} \mathbf{Z}^{3} + \dots$$
(7)

実際の数値計算では無限級数のうち有限の項数を採用する ことになるが,第何項まで採用すべきかについては,次の 精度判定により決定した.

$$\frac{1}{k!} \left\| \boldsymbol{Z}^k \right\| < \text{TOL} \tag{8}$$

本研究における数値解析では TOL = 1.0 × 10⁻¹⁸ とした. また,式(7)で,2次以降の項を無視して第1項までのみを 用いることで一次の後退差分近似になる.

Key Words: 有限変形理論,弾塑性構成則,下負荷面 *Cam-clay* モデル,塑性発展則,テンソル指数関数,リターンマッピング 〒980-8579 仙台市青葉区荒巻字青葉 6-6-06,東北大学大学院工学研究科土木工学専攻, Phone: 022-795-7420

$$\boldsymbol{F}_{n+1}^{\mathrm{p}} = (\boldsymbol{I} + \boldsymbol{\bar{L}}_{n+1}^{\mathrm{p}})\boldsymbol{F}_{\mathrm{n}}^{\mathrm{p}} = \boldsymbol{F}_{n}^{\mathrm{p}} + \boldsymbol{\bar{L}}_{n+1}^{\mathrm{p}}\boldsymbol{F}_{n}^{\mathrm{p}} \qquad (9$$

その他の塑性内部状態変数の発展則は紙面の都合上割愛 するが,式(5),(6)と同様である.本研究で対象とする弾 塑性モデルでは, \bar{L}^{p} は以下の通りである.

$$\bar{\boldsymbol{L}}^{\mathrm{p}} := \dot{\boldsymbol{F}}^{\mathrm{p}} \boldsymbol{F}^{\mathrm{p}-1} \tag{10}$$

式 (6) で \bar{L}_{n+1}^{p} の代わりに \bar{L}_{n}^{p} を用いると,式 (6) 左辺は時 刻 t_{n} での既知量のみとなり,陽的差分近似となる.

3. 精度検証解析

(1) 変形増分の設定

本研究では、応力計算の時間積分においてテンソル指数 関数を式7を用いて示した場合と式9を用いて一次近似し た場合における応力計算精度の比較を行うために、せん断 変形・体積変形の変形制御を与え、その入力変形に対する 応力計算結果を誤差マップにより評価する.変形制御の解 析については、変形勾配 **F** を、

$$\boldsymbol{F} = \boldsymbol{F}_* \boldsymbol{F}_0, \quad \boldsymbol{F}_* = \begin{bmatrix} 1 + H_{\rm v} & H_{\rm s} & 0\\ 0 & 1 + H_{\rm v} & 0\\ 0 & 0 & 1 + H_{\rm v} \end{bmatrix}$$
(11)

と表し、せん断変形に対応する $H_{\rm s}$ と等方変形に対応する $H_{\rm v}$ を指定することにより解析を行う.ここで、 F_0 は初期 状態を規定する変形勾配であり、ここでは、 $F_0 = I$ として 解析を行う.

比較検証の方法として,リターンマッピングアルゴリズ ムにおける数値解と参照解の比較を行う.

体積変形 H_v の値は $-0.020 \le H_v \le +0.020$ の範囲で 0.005 刻みで設定した.また,せん断変形 H_s の値は $0.00 \le H_v \le 0.20$ の範囲で 0.05 刻みで設定した.なお,数値解は 所定の変形を 1 ステップで与えたものとし,参照解は所定 の変形を 1000 ステップに分割して与えた数値解で代用する こととする.

応力更新アルゴリズムによる数値解と参照解の比較は次 式を用いた相対誤差による評価を行った.

ERR :=
$$\frac{\|\boldsymbol{\tau} - \boldsymbol{\tau}^*\|}{\|\boldsymbol{\tau}^*\|} \times 100$$
 (%) (12)

ここで τ は Kirchhoff 応力であり、上添字 (*) がついた 量を参照解とする.

(2) 検証と考察

テンソル指数関数の近似において,式(7)を用い,高次 項を十分にとった場合を Case A とし,式(9)を用いて1次 近似した場合を Case B とする. Case A のうち一部の解析 結果の応力-ひずみ関係及び応力経路を図-2,図-3 に示す. 1000 ステップ解析を参照解とし,1ステップ解析における 解析結果との誤差評価マップを Case A 及び Case B につい てそれぞれ図-4,図-5 に示す.また,Case A の場合にお いてテンソル指数関数の級数表示の収束に必要な項数 nを 表-1 に示す.図-4,図-5 より Case A と Case B を比較す ると,応力計算の精度はほぼ同様であり,Case B でも近似 精度の低下は見られなかった.また,表-2に示すように, リターンマッピングにおける反復回数は,2ケース間で殆 ど変化は無かった.以上の結果より,テンソル指数関数の 近似の改良は,計算コストの低減に有効であると考えられ る.式(6)の陽的差分近似を用いた場合の検討や,計算コ ストの比較を今後行う予定である.

₹-1	級数表示の項数	(1)	ス	テ	ッ	プ	/1000	ス	テ	ッ	プ)
		_				-	/				-	

	H _v						
$H_{\rm s}$	-0.02	-0.01	0.00	+0.01	+0.02		
0.00	8/4	7/4	-	-	-		
0.05	9/4	8/4	7/4	-/4	5/4		
0.10	9/4	9/4	9/4	9/4	9/5		
0.15	10/4	10/4	10/4	10/5	10/5		
0.20	10/4	10/4	10/5	11/5	11/5		

表-2 1ステップ解析における収束までの反復回数 (A/B)

	$H_{\rm v}$					
$H_{\rm s}$	-0.02	-0.01	0.00	+0.01	+0.02	
0.00	8/8	6/8	-	-	-	
0.05	10/10	10/10	8/8	-	5/5	
0.10	13/13	13/13	13/13	14/14	14/14	
0.15	16/15	16/16	17/17	18/18	21/21	
0.20	20/19	22/21	23/23	22/22	25/21	

参考文献

₹

 山川優樹、山口洋介、橋口公一、池田清宏:拡張下負荷面 Camclay モデルの有限変形に基づく定式化とリターンマッピングを 用いた陰的応力更新法.応用力学論文集,Vol. 13, pp. 411–422, 2010.