ミクロ・マクロ連成シミュレーションによる互層岩盤の損傷解析

○東北大学工学部建築・社会環境工学科	学生会員	山中耀介
東北大学大学院工学研究科	学生会員	鈴木峻
東北大学災害科学国際研究所	正会員	寺田賢二郎
東北大学災害科学国際研究所	正会員	森口周二
東北大学大学院工学研究科	学生会員	大川真里奈

1. はじめに

互層岩盤は内部に複雑な微視的構造を有するため,数値 解析による岩盤構造物の変形・損傷挙動の予測は難しく,計 算コストも高い.そこで本研究では、ミクロ・マクロ分離型 マルチスケール解析により計算コストを抑えた上で岩盤の 正確な挙動を予測する手法を提案する.具体的には、泥岩 と砂岩それぞれが弾塑性・損傷変形を生じるようなユニッ トセルに対して数値材料試験を行い、それにより得られる 等価な均質体としてのマクロ材料挙動を直交異方弾塑性・ 損傷モデルで表現する.差分進化により同定したマクロ材 料構成則のパラメータを用いてマクロ構造解析を行い、提 案した手法により岩盤の異方性変形・損傷挙動が表現可能 であることを示す.

2. ミクロ材料構成則

2.1 等方性弹塑性構成則

等方性弾塑性構成則には Drucker–Prager モデルを採用する.まず,弾性域は Hooke の弾性構成則にしたがって,

$$\boldsymbol{\sigma} = \mathbb{D}^{\mathrm{e}} : \boldsymbol{\varepsilon}^{\mathrm{e}} = \left(2G\boldsymbol{I}^{\mathrm{dev}} + K\boldsymbol{I} \otimes \boldsymbol{I}\right) : \boldsymbol{\varepsilon}^{\mathrm{e}} = 2G\boldsymbol{\varepsilon}_{\mathrm{d}}^{\mathrm{e}} + \kappa\boldsymbol{\varepsilon}_{\mathrm{v}}^{\mathrm{e}}\boldsymbol{I} \quad (1)$$

とする.ここで、 σ は応力テンソル、 \mathbb{D}^{e} は等方性の弾性テンソル、Kは体積弾性係数、Gはせん断弾性係数、 ε_{d}^{e} は弾性ひずみの偏差成分テンソル、Iは2階の恒等テンソル、 ε_{v}^{e} は弾性ひずみの静水圧成分である.Drucker–Prager モデルの降伏基準はパラメータ η と ξ を用いて応力 σ と粘着力cの関数で表される.

$$\Phi(\sigma, c) \equiv \sqrt{J_2(s(\sigma))} + \eta p(\sigma) - \xi c = 0$$
(2)

ここに, J_2 は偏差応力 s の第 2 不変量, p は静水圧応力で ある. 塑性流れポテンシャルはパラメータ $\bar{\eta}$ を用いて次式 のように定義する.

$$\Psi(\boldsymbol{\sigma}, c) \equiv \sqrt{J_2(\boldsymbol{s}(\boldsymbol{\sigma}))} + \bar{\eta}p(\boldsymbol{\sigma})$$
(3)

塑性乗数 ý と降伏関数 Φ により,以下の弾塑性モデルの載 荷/除荷条件が成立する.

$$\Phi \le 0, \quad \dot{\gamma} \ge 0, \quad \dot{\gamma} \Phi = 0 \tag{4}$$

2.2 損傷構成則

応力--ひずみ関係はスカラーの損傷変数 D を用いて次式のように表される.

$$\boldsymbol{\sigma} = (1 - D) \,\mathbb{D}^{\mathrm{e}} : \boldsymbol{\varepsilon} \tag{5}$$

この D は車谷ら¹⁾の破壊力学に基づく等方性損傷モデルを 実質応力空間に拡張した変数であり,発展則は

$$D\left(\eta^{d}\right) = 1 - \frac{\eta_{0}^{d}}{\eta^{d}} \left(1 - \alpha^{d} + \alpha^{d} \exp\left(-\beta\left(\eta^{d} - \eta_{0}^{d}\right)\right)\right)$$
(6)

となる.ここに α^d は損傷による応力の減少率, β は材料特性に依存するパラメータである.損傷開始の条件として,損傷関数を以下の二曲面モデルで定義する.

$$\phi_1\left(\boldsymbol{\sigma}^{\text{eff}}\right) = \frac{f_t}{\tau_f} \sqrt{J_2\left(\boldsymbol{s}\right)} - \eta^d\left(\boldsymbol{\sigma}^{\text{eff}}\right) = 0 \tag{7}$$

$$\phi_2\left(\boldsymbol{\sigma}^{\text{eff}}\right) = I_1(\boldsymbol{\sigma}^{\text{eff}}) - \eta^d\left(\boldsymbol{\sigma}^{\text{eff}}\right) = 0$$
(8)

ここに, σ^{eff} は有効応力, I_1 は有効応力の第1不変量である.

3. マクロ材料構成則

3.1 直交異方性弹塑性構成則

直交異方性弾塑性構成則には Hoffman モデルを採用する. 応力–ひずみ関係は直交異方性の弾性テンソル ℃ を用 いて,

$$\tilde{\boldsymbol{\sigma}} = \mathbb{C}^{\mathrm{e}} : \tilde{\boldsymbol{\varepsilon}}^{\mathrm{e}} \tag{9}$$

となる. Hoffman の降伏基準は Hill 基準を拡張した形で,

$$\tilde{\Phi}(\tilde{\sigma},\tilde{\alpha}) = \tilde{\sigma}: \boldsymbol{M}: \tilde{\sigma} + \boldsymbol{q}: \tilde{\sigma} - \tilde{\sigma}_{\mathrm{Y}}^{2}(\tilde{\alpha}) = 0 \qquad (10)$$

と表される. ここに $M \ge q$ はそれぞれ 4 階と 2 階のテン ソルであり,材料の各軸における引張・圧縮・せん断降伏応 力により与えられる. また, $\tilde{\sigma}_{Y}(\tilde{a})$ は降伏応力である. 塑 性ポテンシャルは降伏関数と同じ式を用いる関連流れ則と する.

$$\tilde{\Psi}(\tilde{\boldsymbol{\sigma}}, \tilde{\boldsymbol{\alpha}}) \equiv \tilde{\boldsymbol{\Phi}}(\tilde{\boldsymbol{\sigma}}, \tilde{\boldsymbol{\alpha}}) = \tilde{\boldsymbol{\sigma}} : \boldsymbol{M} : \tilde{\boldsymbol{\sigma}} + \boldsymbol{q} : \tilde{\boldsymbol{\sigma}} - \tilde{\boldsymbol{\sigma}}_{\mathrm{Y}}^{2}(\tilde{\boldsymbol{\alpha}}) \quad (11)$$

また,直交異方性弾塑性構成則においても式(4)と同様に, 載荷/除荷に関して次の相補性条件が成立する.

$$\tilde{\Phi}(\tilde{\sigma}, \tilde{\alpha}) \le 0, \quad \dot{\tilde{\gamma}} \ge 0, \quad \dot{\tilde{\gamma}}\tilde{\Phi}(\tilde{\sigma}, \tilde{\alpha}) = 0$$
 (12)

Key Words: 均質化法,マルチスケール解析,直交異方性弾塑性,損傷モデル,差分進化 〒980-8572 仙台市青葉区荒巻字青葉 468-1 災害科学国際研究所 4F S403-S404, TEL 022-752-2132, FAX 022-752-2133

3.2 直交異方性損傷構成則

直交異方性損傷構成則はミクロ材料構成則と同様に定式 化を行う.

応力–ひずみ関係と損傷変数 **D**の発展則は次式のように 表される.

$$\tilde{\boldsymbol{\sigma}} = \left(1 - \tilde{D}\right) \mathbb{C}^{\mathrm{e}} : \tilde{\boldsymbol{\varepsilon}}^{\mathrm{e}}$$
(13)

$$\tilde{D}\left(\tilde{\eta}^{d}\right) = 1 - \frac{\tilde{\eta}_{0}^{d}}{\tilde{\eta}^{d}} \left(1 - \tilde{\alpha}^{d} + \tilde{\alpha}^{d} \exp\left(-\tilde{\beta}\left(\tilde{\eta}^{d} - \tilde{\eta}_{0}^{d}\right)\right)\right)$$
(14)

損傷開始の条件として損傷関数は次式のように定義する.

$$\tilde{\boldsymbol{\Phi}}^{\mathrm{d}} = \tilde{\boldsymbol{\sigma}}^{\mathrm{eff}} : \boldsymbol{M}^{\mathrm{d}} : \tilde{\boldsymbol{\sigma}}^{\mathrm{eff}} + \boldsymbol{q}^{\mathrm{d}} : \tilde{\boldsymbol{\sigma}}^{\mathrm{eff}} - \left(\tilde{\boldsymbol{\eta}}^{\mathrm{d}}\right)^{2} = 0 \qquad (15)$$

ここに、 $\tilde{\sigma}^{\text{eff}}$ は有効応力であり、 $M^{d} \geq q^{d}$ はそれぞれ $M \geq q$ に用いる引張・圧縮・せん断降伏応力を引張・圧縮・せん 断強度に変換して与えられる.

4. 数値材料試験とパラメータ同定

図-1 に示す泥岩と砂岩の互層構造で構成される非均質岩 盤をユニットセルとして数値材料試験を行った.ユニット セルにおける泥岩と砂岩の体積比は8:2であり,2節で示 した等方性弾塑性・損傷構成則を採用する.荷重条件とし てxx方向単軸圧縮・引張,yy方向単軸圧縮・引張,xy方向 せん断,zx方向せん断の6つのマクロ変形パターンに対し て変形量が2.5%になるまで負荷を与えることでマクロ応力 の応答を得る.ここで,ユニットセルがx軸とz軸につい て対称性を有するためzz方向引張・圧縮試験およびyzせん 断試験についてはそれぞれxx方向引張・圧縮試験およびxy せん断試験の結果を用いる.

数値材料試験の結果を用いて差分進化(DE)によりマクロ材料構成則のパラメータ同定を行った。得られた結果の例として xx 方向圧縮試験とその同定曲線を図-2 に示す。

5. マクロ構造解析

第3節で説明したマクロ材料構成則に第4節で同定した パラメータを適用してマクロ構造解析を行う.ここで,マ クロ構造は地震外力を受ける地中のトンネルを想定してモ デル全体がせん断変形するように強制変位を与える.互層 傾斜角が0°,30°のケースについて数値解析を行い,得られ

図-2 xx 方向圧縮同定曲線

図-3 損傷変数のコンター図(互層傾斜角 0°)

図-4 損傷変数のコンター図(互層傾斜角 30°)

た損傷変数のコンター図をそれぞれ図-3,図-4に示す.互 層傾斜角により異なる部分に損傷が発生しており,これは 異方性の影響で応力分布が変化したことに起因すると考え られる.

6. 結論

互層岩盤の複雑な微視的構造に起因する異方性および引 張・圧縮依存性の複雑な変形・強度特性を,数値材料試験を 経て獲得し,Hoffmanモデルの直交異方性弾塑性・損傷構成 則に適用することで,マクロ構造解析を行うミクロ・マクロ 解析システムを構築した.そして,この手法によれば変形 状態や損傷状態を予測可能であり,岩盤の互層傾斜角反映 させることが可能であることを示した.

参考文献

1) 車谷麻緒,寺田賢二郎,加藤準治,京谷孝史,樫山和夫 共著: コンクリートの破壊力学に基づく等方性損傷モデルの定式化と その性能評価,日本計算工学会論文集,2013巻,p.20130015, 2013.