高性能化を目指し開発された各種 RC 床版の 耐凍害性に関する検討

日本大学 学生会員 〇佐藤 雅俊 日本大学 功刀 裕貴 日本大学 正会員 子田 康弘 日本大学 フェロー会員 岩城 一郎

1. はじめに

東北地方のような積雪寒冷地における道路構造物 には凍結防止剤(主に NaCl)が大量に散布されるた め、道路橋 RC 床版では、塩害、凍害、ASR が促進さ れる恐れがある。当研究室では、高耐久 RC 床版の開 発を目的に、フライアッシュの使用を提案し、塩害と ASR に対し優れた抵抗性を示すことを明らかにし、現 場への実装に成功したり。しかし、フライアッシュは所 要の空気量を連行することが難しいこと、今後より軽量 な床版が求められていることなどから、これらの要求に 合致した研究開発も必要となる。そこで本研究では、 高性能化を目指し開発を進めている中空微小球(以 下、M)2)とフライアッシュ(以下、FA)を組み合わせた床 版と、軽量骨材(以下、L)を用いた床版を対象に、部 材レベルにおける耐凍害性に関する評価を行った。な お、本実験は、現在も継続中であり、本稿では途中経 過として要素試験および凍結融解試験の開始時の状 況について述べる。

2. 実験概要

表-1 に、実験条件を示す。表より、本実験は、3 つのシリーズで構成されている。シリーズ I は、普通コンクリートを用いた他のシリーズとの比較シリーズであり、AE(N)、Non-AE(N-NA)という空気量を調整した供試体と、エトリンガイト・石灰複合系膨張材を混和した(N-PC)供試体である。シリーズ II は、品質の異なる FA に M を配合したもので、M 単体と、M に II 種と IV 種の FA を混合した計 3 供試

表-1 実験条件

シリーズ	供試体名	設定条件
	N	LとMの比較対象として作製した普通コンクリート供試体
I	N-NA	Nに消泡剤を混和し空気量を少なくした供試体
	N-PC	Nに膨張剤を混和した供試体
	M	中空微小球を混和した供試体
Π	M-FA	Mのセメントを能代産フライアッシュⅡ種で置換した供試体
	M-FB	Mのセメントを酒田産フライアッシュIV種で置換した供試体
Ш	L	設計空気量はNと同様にし軽量骨材を用いた供試体
III	L-PC	Lに膨張剤を混和した供試体

表-2 各種コンクリートの配合表

(a) シリーズ I

記号	W/B	s/a	SL	Air	単位量(kg/m³)							
IL 7	(%)	(%)	(cm)	(%)	W	C	PC	Sn	Gn	Ad	D	
N						200	_					
N-NA	55	47.2	12	4.5	169	308	_	848	968	3.08	0.3	
N-PC						288	20				_	

(b) シリーズ II

記号	W/B	s/a	SL	Air				į	单位量(kg	2/m³)				l
記方	(%)	(%)	(cm)	(%)	W	C	FA	FB	M	Sn	Gn	Ad	AE*	
M				4.5		365	_	_	1.95					
M-FA	45.5	45.4	12	4.5	166	292	73	-	1.95	799	979	3.65	調整	
M-FB	43.3	43.4	12	目標 4.5	100	292	_	73	調整	199	213	3.03	叫歪	

(c) シリーズⅢ

記号	W/B	s/a	SL	Air	単位量(kg/m³)								
il 7	(%)	(%)	(cm)	(%)	W	C	PC	Sl	Gl	SP	AE*		
L	37	48.5	10	4.5	170	459	-	502	428	0.35	0.01		
L-PC		48.3	18			429	15						

*: AE 助剤は 100 倍希釈液としての使用量

写真-1 凍結融解試験状況

体である。シリーズ III は、L と L に膨張材を混和した(L-PC)計 2 供試体である。表-2 に、供試体の配合を示す。供試体形状は、幅 1000mm×長さ 1000mm×高さ 250mm の正方形の鉄筋コンクリートであり、配筋も含め実床版の一部をモデル化した形状である。凍結融解試験は、大型環境試験装置を用いて、ASMT C 672 を参考とした上面湛水法を採用し、供試体上面に濃度 3%の NaCl 溶液を深さ 5mm 程度で湛水させた。凍結融解サイクルは、試験機側の制御で+20°C~-20°C の温度範囲を 1 日 2 サイクルとし、目標サイクル数として 150 サイクル以上を予定している。写真-1 は、凍結融解試験状況である。測定項目は、試験面上に発生したスケーリング片によるスケーリング量測定と、2D 写真をモザイク処理し、これを 3D 化させる画像解析に基づくスケーリング深さ測定である。なお、試験面におけるコンクリートの表層品質を把握するため、透気試験と現場気泡間隔測定試験を行った。加えて、凍害によるコンクリート内部の損傷を評価するため、強制振動試験による 0 サイクル時共振周波数を測定した。

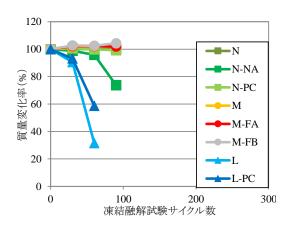
キーワード 耐久性、凍害,床版,スケーリング劣化,凍結融解試験

連絡先 〒963-8642 福島県郡山市田村町徳定字中河原 1 番地 TEL024-956-8721

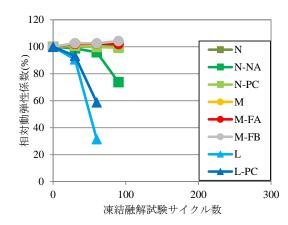
3. 実験結果および考察

まず、図-1 に、供試体に用いたコンクリートで作製した JIS A 1148 に準拠する角柱供試体の凍結融解試験の経過(90 サイクル)を示す。なお、試験溶液は真水である。図より、質量変化率は、L、L-PC、N-NA の順に減少傾向にある。この他の供試体については、ほぼ100%を維持している。相対動弾性係数に関しても同様に、L、L-PC、N-NA の順に減少傾向にあり、他に変化は認められてはいない。90 サイクルまでの推移より、N-NA は、そのコンクリートの特性上、凍結融解抵抗性が劣る傾向であるが、軽量骨材がN-NA よりも抵抗性が劣るような傾向を示しており、要素試験においてもその推移に注視する必要がある。

次に、本供試体における0サイクル時透気係数は、シリーズ I が グレード 3、シリーズ II と III がグレード 2 と、表層品質は、比較的 良好であることを確認した。図-2 に、供試体試験面の気泡間隔係 数を示す。 図より、N-NA と L、L-PC は、値が 400μ 以上となり、図 -1 の傾向とも整合する結果であった。次に、N-PC が約 350μ で若 干値が大きい傾向であった。この他の供試体は概ね 250μ 以下と 気泡分布からは一般的に言われる良好な耐凍害性を有する試験 面と判断される。このような供試体の状態に対して凍結融解試験 を行っており、現時点である15サイクル時のスケーリング量測定結 果を図-3 に示す。 図より、 シリーズ I では、 N-NA が既にスケーリン グ劣化が進行していることが分かる。次に N と N-PC にスケーリン グが発生している状況であった。これに対して、シリーズ III は、要 素試験のような凍結融解サイクル初期からスケーリングが著しい 状況にはなってはおらず、真水と塩水ではスケーリング劣化の抵 抗性が異なる可能性がある。シリーズ Ⅱ に関しては、M の効果に よって、耐凍害性に劣る可能性は低いものと想定される。


4. まとめ

高性能化を目指した RC 床版の実用のため、凍結防止剤散布環境下における耐凍害性の評価を実施している。実験初期段階ではあるが、各種床版の気泡分布状態と要素試験より、耐凍害性に各種 RC 床版の特性が表れる可能性が示唆された。本計測の結果は、発表時に報告するものである。


謝辞:本研究は、CART (研究代表:岸利治) により行われたもので、実験は DENKA との共同研究として実施している。ここに記し関係者に謝意を表します。

【参考文献】

- 1)榊原直樹ら(2016):フライアッシュコンクリート床版の各種耐久性評価-国道 283 号釜石道路工事向定内橋(仮称)-、橋梁と基礎 4 月号
- 2) 寺崎聖一ら(2015): フライアッシュと膨張材を配合したコンクリートの凍結防止剤散布下での耐凍害性に及ぼす中空微小球の効果,第69回セメント技術大会,pp.286-289

(a) 質量変化率

(b) 相対動弾性係数

図-1 JIS 法による凍結融解試験(要素試験)結果

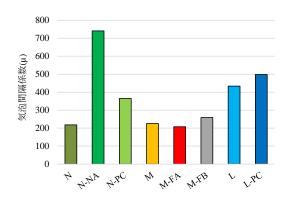


図-2 試験面における気泡間隔係数測定結果

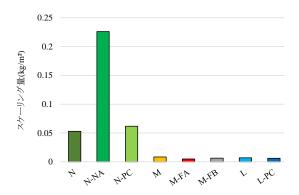


図-3 スケーリング量(15 サイクル終了時)