泥炭の変形係数におよぼす載荷速度の影響

秋田大学 学生会員 吉濱佳太 学生会員 畑下侑輝 正会員 荻野俊寛 正会員 田口岳志 秋田工業高等専門学校 正会員 山添誠隆

1.研究背景・目的

近年の土地利用の高度化により,泥炭地盤上においても近接施工の事例 が増えている.近接施工では,施工に先立ち FEM などの数値解析により周 辺地盤変形を正確に事前予測する必要があるが,泥炭の微小〜大ひずみ域 における変形特性,とりわけひずみ速度の影響については未解明な点が多 い.本研究では秋田県内で採取した不攪乱泥炭に対して,そのクリープ特性 を踏まえた上で,ベンダーエレメント(以下 BE)試験および繰返し載荷試験 を伴う三軸非排水せん断を行い,広範囲なひずみ域において泥炭の変形挙 動を評価した.

2.試料および実験概要

実験に用いた試料は,秋田県横手市郊外で採取した大雄泥炭 であり,深度 1m 程度の泥炭層に直径 70mm の塩ビ管を貫入し て採取した.採取した試料の上下端面を成形し,高さ約 140mm の供試体とした.試料の自然含水比は 638%,土粒子密度は 1.66g/cm3,強熱減量は 70%,分解度は 88%であった.この試 料に対し,以下の二種類の実験を実施した.

・非排水クリープ試験

変形係数の評価に先立って,非排水クリープによる過剰間隙 水圧上昇¹⁾について検討を行う.初期等方圧密応力 *p*=30kPa で 圧密し 3*t* 法によって非排水への切り替えを行った後, *p*一定 のまま,非排水状態で8日間経過を見て,非排水クリープの影 響を計測した.その後,再び排水状態に戻し,*p*一定のまま排 水クリープさせ,4日間体積変化を測定した.

・BE 試験及び繰返し載荷試験を伴う非排水三軸試験 BE 試験および繰返し載荷試験を伴う非排水三軸試験を行う.試験の 流れは圧密応力比 K=1.0,目標応力 30kPa として初期等方圧密をした のち圧密を打ち切り,繰返し載荷試験,および単調載荷試験の圧縮あ るいは伸長試験を実施した.繰返し載荷試験から単調載荷直前の Eo が得られる(図-1).載荷速度は dea/dt=0.002, 0.02, 0.2%/min である. 単調載荷試験の載荷速度は圧縮試験の場合 dea/dt=0.02, 2%/min,伸長 試験の場合 dea/dt=0.02%/min とした.載荷速度が遅い場合,単調載荷 試験には長時間を要する.この間に発生する非排水クリープの影響 を考慮して初期等方圧密の打切りは,体積ひずみ速度が dea/dt=0.0002%/min に到達した時とした.これより初期圧密を長期間 行うことで,その後に実施する単調載荷時の非排水クリープを極力 抑える狙いがある. 圧密沈下曲線の一例を図-2 に示す.

また初期等方圧密中および単調載荷試験中,断続的に BE 試験を実施した.BE 実験から,変形係数としてせん断弾性係数 G が得られる. また,単調載荷試験において得られる応力-ひずみ関係より,割線ヤン グ率 Esec と接線ヤング率 Etan が得られる(図-1).接線ヤング率 Etan については任意の点の前後 9 点を用いた近似線の傾きとして求めた.

3.実験結果および考察

図-3 は非排水クリープ試験中の間隙水圧の変化を示している。初期 等方圧密中は圧密応力が目標に到達した後,セル圧,間隙水圧の値は ほぼ一定を保っているが,非排水クリープ開始とともに間隙水圧が上

図-1 Eo, Esec, Etan の定義

図-2 代表的な圧密沈下曲線

図-3 非排水クリープ試験中の間隙水圧および

キーワード 泥炭 非排水クリープ BE 試験 せん断弾性係数 接線ヤング率 割線ヤング率 連絡先 〒010-8502 秋田県秋田市手形学園町 1-1 TEL 018-889-2364 昇し、約200時間で8kPaの間隙水圧増分が発生しており、 これは圧密応力pの26%に相当する.その後、再び排水状態 に戻すと、間隙水圧は非排水クリープ開始時の値まで戻って いる。非排水クリープ中は間隙水圧の上昇に伴い、セル圧と 間隙水圧の差分である有効応力の減少が見られる.非排水ク リープ中の間隙水圧の上昇を図-4に示す.単調載荷中、同様 の非排水クリープが発生するとすれば、本研究で設定した最 小の載荷速度0.02%/minの場合、間隙水圧上昇は1.2kPa程度 だが、0.002%とした場合、5.8kPaとなる.

また非排水クリープ中のせん断弾性係数 G の変化を図-5 に示す.初期等方圧密中および排水クリープ中は有効応力一 定のまま間隙比が減少するため,Gが増加している。ところ が,非排水クリープ中は間隙水圧の上昇によって有効応力が 減少しているにも関わらず,Gは減少せず,ほぼ一定か,あ るいはやや増加している.

図-6 は非排水クリープ試験中の e-logp 関係および logG-logp 関係の模式図 である。非排水クリープ中の経路は B→C のように推移しており、これは A 点から除荷によって過圧密領域へ達した状態 (A→D→C) と等価である。そ のため、有効応力減少による G の減少が過圧密の影響によって相殺された ため、G が上記の様な推移をしたと推察される.また、排水クリープ中の経路は C→F のように推移する.

図-7 に非排水せん断のひずみ増大に伴う G の減少率を示す.ひずみが大 きく変化しているにもかかわらず,Gは20%未満しか変化していない.また, 試験条件の違いによる差はほとんどみられない.せん断弾性係数 G は変形 係数の弾性成分を示すものであるが,図-7 よりせん断弾性係数 G があまり 減少していないことから,泥炭の変形係数のうち,ひずみ増大に伴う弾性成 分の変化は小さいことが示された.図-8 は単調載荷試験中の Etan と Esec の変 化を示している. どの試験条件においてもひずみ増大に伴い,Etan と Esec は 大幅に減少していることがわかる.また載荷速度が同じ圧縮試験と伸長試験 の結果は類似したものとなり,圧縮試験について異なる載荷速度の結果に関

しては載荷速度が速いものの値が多少大きくなっている.実験条件 によって得られる結果に多少の違いは出るものの,これらは総じて ひずみの増大に伴い大幅に減少している.接線ヤング率 Esec と割線 ヤング率 Etan は変形係数の弾塑性成分を表している.図-7より弾性 成分の変化は小さいことから,ひずみ増大に伴う泥炭の変形係数の 減少は,主に塑性成分の減少によるものであることが示された.

4.まとめ

本研究から得られた知見は以下のとおりである.

- ・ 非排水クリープによる泥炭の間隙水圧上昇を確認した.上昇 量は 200 時間で圧密応力の約 26%であり,単調載荷試験中の 有効応力の減少は最大で 1.2kPa 程度であった.また,非排水 クリープ中,有効応力の減少による G の変化はほとんど生じ なかった.
- ・ 非排水せん断中のひずみ増大に伴い変形係数が減少する事が わかった。そのうち変形係数の弾性成分を示すせん断弾性係 数Gについてはあまり変化せず、弾塑性成分を示す接線ヤン グ率 E_{tan}と割線ヤング率 E_{sec}については大幅に減少した。これ より泥炭の変形係数の変化は主に塑性成分によるものだとい う事を明らかにした。

【参考文献】

 小高ら:練返し再構成粘土の非排水三軸繰返しクリープ試験,土木学会 第56回年次学術講演会,pp.118-119,2001.

図-7 非排水せん断中の G

図-8 Esec, Etan の比較