津波の遡上高や土砂堆積厚などのシールズ数への依存性

秋田大学 学生員 〇今野史子 久保田友寛 岡田隼人 正員 松冨英夫

1.はじめに 著者らは津波荷重評価の高度化を目指し て津波氾濫水密度ρ(または比重=ρ/ρ_w.ρ_wは水の密度)の 津波入射フルード数F_nへの依存性を,津波規模評価の高 度化を目指して無次元の津波遡上距離L_R/L_{RW},土砂堆積 域長L_{RS}/L_R,平均土砂堆積厚Z/L_{RS}の津波氾濫水密度への 依存性を検討してきた¹⁾.本研究は津波荷重評価や津波 規模評価の高度化を目指して,既報実験データ¹⁾の妥当 性の検証とともに,無次元の津波遡上距離,土砂堆積域 長,平均土砂堆積厚のシールズ数への依存性を検討する. 2.実験

2.1 土砂 「本実験」における土砂は宮城県仙台市の 荒浜海岸で採取したものを使用した.表-1に実験ケース 毎の実験前土砂の粒度特性例を示す.

2.2 実験方法 津波氾濫流はすべり台上端の水平部に ゲート付きの貯水槽を設置し、ゲート急開流れで模擬し た.ゲート水平部の高さは水平水路部の底面から0.5 m, 水路幅は0.3 m, 貯水槽の諸元は高さ0.5 m,幅0.3 m,奥 行0.45 mとし、貯水深h_Uやすべり台の斜面勾配S₁,水平 水路部の初期土砂層域長L_s、初期土砂層厚h_T、上り勾配 斜面の高さh_sと斜面勾配S₂、上り勾配斜面下流端とメス シリンダー群先端間の水平距離L_Gと鉛直距離L_v上り勾配 斜面に続く緩斜面の長さと斜面勾配S₃、メスシリンダー 群の傾きS₄は「予備実験」を経て決定した.水理量評価 のため、初期土砂層域の上下流端に超音波式水位計

((株) KEYENCE, UD-500) を設置した(図-1参照),水 位計間の距離は3.18 mで,各水位計位置の水路底面位は 同じである.また、氾濫流にマッハ波を形成させ、マッ ハ角から入射氾濫流のフルード数Friを評価するため,初 期土砂層域中心部の土砂層表面から2.0 cm上方にポイン トゲージの先端とその横の水路側壁に横幅0.2 cm,奥行 0.4 cmの水路底面まで達する微小角柱を設置した. さら に、上方や側方からビデオ撮影を行うことにより、水平 水路部や緩斜面部における流況観察と氾濫流先端移動速 度,ポイントゲージ設置位置における非先端部の氾濫水 深,マッハ角を評価した.実験水路の概略(水路側壁は 省略), 測定器具(メスシリンダー群, 超音波式水位計, ポイントゲージ、微小角柱)の配置などを図-1に示す. a) 氾濫水密度実験 2.3 解析方法 氾濫水はすべ り台を流下し,水平水路部で土砂を巻込み空中に飛出す. 空中に飛出した土砂水は落下域において直角に設置した メスシリンダー群(水路横断方向の行に6本,流れ方向の 列に6本,外径56 mm,内径54 mm,秤量500cm³)に採取 される、あらかじめ各メスシリンダーの重量を量り、土 砂水が飛込んだ後の各メスシリンダーの重量を量れば, 土砂水の体積はメスシリンダーから直接読み取ることが

図-1 実験水路の概略,測定器具の配置と諸記号の定義

表─1 「本実験」における実験前土砂の粒度特性例

実験	土砂採取地	中央粒径	均等	曲率
ケース		$d_{50}({ m mm})$	係数	係数
Case 1		0.25	1.50	1.00
Case 2		0.25	1.37	0.98
Case 3	仙台市	0.25	1.37	0.98
Case 4	荒浜海岸	0.28	1.50	1.04
Case 5		0.25	1.42	0.94
Case 6		0.24	1.44	0.94

表-2 「本実験」の実験条件

Case	h_D	h_U	S_1	L_S	h_S	S_2	S_3	S_4	L_G	h_T	M_{SD}
	(m)	(cm)	(°)	(m)	(cm)	(°)	(°)	(°)	(cm)	(cm)	(kg)
Case1	0.5	25	8	3.01	8	5	3.5	90	-1 <i>L</i> _V = 11.5	0.5	10.5
Case2										1	15.5
Case3										2	25.5
Case4										6	73.0
Case5		20								6	73.0
Case6		30								6	73.0

できるので、メスシリンダー内の土砂水の密度が評価で きる.

b) 遡上距離·土砂堆積実験 すべり台を流下し,水平 水路部で土砂を巻込んだ氾濫水は下流端の高さの低い上 り勾配斜面に続く一様勾配の緩斜面を遡上する.上り勾 配斜面以後の緩斜面域は平面形が舌状の土砂堆積域とそ の上流の非常に厚さの薄い、水路床を汚す程度の土砂堆 積域に大別される.本研究では舌状部を有意な土砂堆積 域と判断し、流れ方向は5 cm間隔,水路横断方向は8等分 して、ポイントゲージにより格子状に堆積厚を測定する. c)シールズ数 入射氾濫流のシールズ数は,抵抗則と して広矩形開水路の粗面則、氾濫流速として上下流端の 水位計から得られる水路底面からの高さ0.5, 1.0, 1.5 cm の3点から得られる波形伝播速度の平均速度,氾濫水深と して上下流端の最大水深(後述の図-2の矢印点)の平均 水深,土砂の水中比重として1.65,代表粒径として中央 粒径d50を採用して評価する.

2.4 実験条件 「本実験」の実験条件を表-2に示す. 表中, *M*sは実験において初期に水平水路部に敷詰めた土 砂の全質量で,他の記号については図-1を参照されたい.

実験では炉乾燥後に自然放置して冷ました土砂を水平 水路部に敷詰めた.実験回数は各ケース1回とした.

キーワード: 遡上, 土砂堆積, 津波, 実験

連絡先(〒010-8502 秋田市手形学園町1-1 TEL 018-889-2363)

実 験 ケース	h_T (cm)	平均氾濫	相対遡	土砂堆	平均土砂	入射フルード数			
		水 密 度	上距離	積距離	堆積厚	マッハ角	マッハ角	上地较新演曲利用	このリーブ米ケ
		ρ (g/cm ³)	L_R/L_{RW}	L_{RS} (cm)	Z(cm)	(側壁)	(中央)	尤喻移動迷皮利用	シールス数
Case 1	0.5	1.089 (1.071)	121/186.5	82	0.23	2.34	3.12	2.28	1.78
Case 2	1	1.082 (1.063)	120/186.5	90	0.29	2.29	3.20	2.97	1.90
Case 3	2	1.080 (1.059)	109/186.5	75	0.22	2.11	3.12	2.76	1.91
Case 4	6	1.084 (1.051)	95/186.5	76	0.29	2.28	2.56	2.67	1.94
Case 5	6	-	-	24	0.12	2.29	2.52	2.09	1.13
Case 6	6	-	-	122	0.43	2.75	3.91	2.64	2.21

表−3 実験結果(()内はメスシリンダー毎の算術平均)

3. 実験結果と考察

3.1 採水体積,密度と土砂堆積厚,シールズ数 図-2 に初期土砂層域の上下流端における氾濫水深h(=水面 位)の経時変化例を示す.実験ケースの時間t=0は任意に 決めている.図中の矢印は上下流端の最大氾濫水深であ る.図-3にメスシリンダーによる氾濫水の採水体積(左), 密度ρ(中央)と緩斜面上における土砂堆積厚(右)の平 面空間分布例を示す.各図,左(Row 1)が海側,右が 陸側である.表-3に採水した氾濫水の全量から評価した 平面空間平均の氾濫水密度,氾濫水の最大遡上距離(分 母は清水の場合),最大土砂堆積距離,平面空間平均の土 砂堆積厚(以下,平均土砂堆積厚),既述の3方法に基づ く本研究実験の入射フルード数とシールズ数の評価結果 を示すに関する実験結果を示す.()内はメスシリンダー 毎に評価した氾濫水密度を平均した値を表す.

3.2 シールズ数への依存性 図-4と5に入射津波のシ ールズ数と津波氾濫水密度,無次元の津波遡上距離,土 砂堆積域長,平均土砂堆積厚の関係を示す.これらの図 の解釈においては,初期の総土砂量が調整されていると ころに,同条件の氾濫流が入射していることに注意を要 する.例えば,図-4(左)によると,シールズ数が小さ くなるにつれて,密度が大きくなっている.これは,入 射津波条件(流入エネルギー)が一定で,初期の総土砂 量が制限されているためであり,氾濫流が土砂を多く含 めば,流勢(エネルギー)を失い,自ずとシールズ数も 小さくなる.したがって,無次元遡上距離は短くなり(図 -4(右)),無次元土砂堆積域長は長くなり(図-5(左)), 無次元平均土砂堆積厚は厚く(図-5(右))なる.これ らは全て物理的に道理に適ったものである.

初期の総土砂量を同じ(水路底面が露出することのな い $h_{T}=6$ cm)にし、入射津波条件を変えた場合の実験結果 例を**図**-6に示す.流入エネルギーが大きくなるにつれ て、シールズ数が大きくなるが、無次元平均土砂堆積厚 は薄くなる傾向にある.これは流入エネルギーが大きい ほど土砂堆積域長が長くなり、それに比べると平均土砂 堆積厚が増加しないためと考えられる.

4. おわりに 主な結果として以下を得た. ①シール ズ数の観点から既報の実験データ¹⁾が物理的に妥当な傾 向を持っていることを確認した(**図**-4と5). ②初期の総 土砂量を一定とし($h_T=6$ cm),入射津波条件を変化させ た実験を通して、シールズ数が増加するにつれて無次元 土砂堆積域長は長く、無次元平均土砂堆積厚が薄くなる ことを確認した(**図**-6).

図−3 土砂を含む氾濫水の採水体積(左),密度ρ(中央)と緩斜 面上の土砂堆積厚(右)の平面空間分布例(Case 4, *h*_T=6 cm)

図-4 シールズ数と密度ρ(左)および無次元津波遡上距離 *L_R/L_{RW}*(右)の関係

図-6 $h_{T}=6$ cmの場合のシールズ数と無次元土砂堆積域長 L_{R} (左)および無次元平均土砂堆積厚 Z/L_{RS} (右)の関係

参考文献 1)松富, 今野, 後村, 今藤, 鎌滝, 渡邉: 津波氾濫 水密度とその遡上距離や土砂堆積への影響に関する定量実験, 土論集 B2 (海岸工学), Vol.73, No.2, pp.373-378, 2017. 2) 松富, 今野, 齋川, 鎌滝, 渡邉: 津波氾濫水密度の土砂堆積や遡上高 への影響, 土論集 B2 (海岸工学), Vol.72, No.2, pp.397-402, 2016.