津波氾濫水密度のフルード数と土砂粒径への依存性

秋田大学 学生員 〇久保田友寛 今野史子 岡田隼人 正員 松冨英夫

1.はじめに 著者らは津波荷重評価や津波規模評価の 高度化を目指して津波氾濫水密度p(~比重)の津波入射 フルード数F_nへの依存性を検討してきた¹⁾⁻³⁾.しかし,そ の依存性は実験における入射フルード数が大きいものに 偏っており,よく判っていない.そこで,本研究は実験 水路を改造し,実際的な入射フルード数に近づけた実験 を新たに実施し,既報実験データの妥当性の検証ととも に,氾濫水密度の入射フルード数への依存性を検討する. 2.実験 2.1 土砂 「本実験」における土砂は宮城 県仙台市と岩沼市の砂浜海岸,秋田県にかほ市の平沢海 水浴場で採取したものを使用した.表-1に「本実験」に おける実験ケース毎の実験前土砂の粒度特性例を示す.

2.2 実験方法 実験水路は簡易に高シールズ数を得る ためにすべり台状の開水路とした.ただし,すべり台斜 面の下端には土砂を敷詰める水平水路部を設け,水平水 路部の下流端には土砂を含んだ氾濫水(土砂水)を制限 して捕捉するために高さの低い上り勾配斜面を設けた. また,すべり台斜面と水平水路部を滑らかに接続するた め,両者の接続部に曲面部を設けた.実験水路の概略(水 路側壁は省略),測定器具(メスシリンダー群,水位計, ポイントゲージ,微小角柱)の配置などを図-1に示す.

津波氾濫流はすべり台上端の水平部にゲート付きの貯 水槽を設置し、ゲート急開流れで模擬した.ゲートはす べり台上端水平部の斜面開始点直ぐ背後に位置する.そ の水平部の高さ h_D は水平水路部の底面から0.5 m,水路幅 は全域で0.3 m,貯水槽の諸元は高さ0.5 m,幅0.3 m,奥 行0.45 mとし、貯水深 h_U やすべり台斜面の勾配 S_1 ,すべ り台斜面と水平水路接続部の曲面部の長さ、水平水路部 の初期土砂層域長 L_s 、初期土砂層厚 h_T 、上り勾配斜面の 高さ h_s と斜面勾配 S_2 、上り勾配斜面下流端とメスシリン ダー群先端間の水平距離 L_G と鉛直距離 L_V 、メスシリンダ 一群の傾き S_4 は「予備実験」を行って決定した.

水理量評価のため,初期土砂層域の上下流端に超音波 式水位計((株)KEYENCE,UD-500)を設置した(図-1 参照).水位計間の距離は3.18 mで,各水位計位置の水路 底面位は同じである.また,氾濫流にマッハ波を形成さ せ,マッハ角から入射氾濫流のフルード数F_n(以下,入 射フルード数)や氾濫流速を評価するため,初期土砂層 域中心部の土砂層表面から2.0 cm上方にポイントゲージ 先端とその真横の水路側壁に横幅0.2 cm,奥行0.4 cmの水 路底面まで達する微小角柱を設置した(図-1参照).さ らに,水平水路部や緩斜面部における流況観察と氾濫流 先端移動速度,ポイントゲージ設置位置における非先端 部の氾濫水深,マッハ角を評価するため,水平水路部と 緩斜面沿いにスケールを配置し(図-1の右端参照),上

図-1 実験水路の概略,測定器具の配置と諸記号の定義

表−1 「本実験」	における実験前土砂の粒度特性例
------------------	-----------------

実 験 ケース	土砂採取地	中央粒径 d ₅₀ (mm)	均等 係数	曲率係数
Case 1	仙台市荒浜海岸	0.28	1.43	0.99
Case 2	岩沼市下野郷浜海岸	0.29	1.68	0.94
Case 3	にかほ市平沢海水浴場	0.22	1.29	1.02

表-2 「本実験」の実験条件

					-					
実 験	h_D	h_U	S_1	L_S	h_S	S_2	S_4	L_G	h_T	M_{SD}
ケース	(m)	(cm)	(°)	(m)	(cm)	(°)	(°)	(cm)	(cm)	(kg)
Case 1								-1	6	73.0
Case 2	0.5	25	8	3.01	8	5	90	$L_V =$	6	73.0
Case 3								11.5	6	73.0

方や側方からビデオ撮影を行った.

2.3 解析方法 氾濫水はすべり台を流下し,水平水路 部に敷詰めた土砂を巻込んで下流端の高さの低い上り勾 配斜面を駆け上がり,空中に飛出す.空中に飛出した土 砂水のかなりの部分は土砂水の落下域において鉛直・格 子状・平に設置したメスシリンダー群(外径56 mm,内 径54 mm,秤量500 cm³のものを流れ方向の列(Column) に6本,水路横断方向の行(Row)に6本の計36本)へ飛 込む.あらかじめ各メスシリンダーの重量を量り,土砂 水が飛込んだ後の各メスシリンダーの重量を量れば,土 砂水の体積はメスシリンダーから直接読み取ることがで きるので,メスシリンダー内の土砂水の密度とその平面 空間分布(土砂水の鉛直密度分布を反映)が評価できる.

入射フルード数と氾濫流速は3方法で評価する.第1法 は上方と側方からのビデオ撮影により得られるマッハ角 (微小角柱)と非先端部の氾濫水深を用いる方法,第2 法は上方と側方からのビデオ撮影により得られるマッハ 角(ポイントゲージ)と非先端部の氾濫水深を用いる方 法,第3法は側方からのビデオ撮影により得られる非先端 部の氾濫水深と氾濫流先端移動速度(≅氾濫流速と仮定) を用いる方法である.

2.4 実験条件 「本実験」の実験条件を表-2に示す. 表中, *M_{SD}*は実験において水平水路部に敷詰めた土砂の 全質量で,他の記号については図-1を参照されたい.

実験では炉乾燥後に自然放置して冷ました土砂を水平 水路部に敷詰めた.実験回数は各ケース1回とした.

3. 実験結果と考察

3.1 氾濫水深と入射フルード数 図-2に初期土砂層 域の上下流端における氾濫水深hと氾濫流速u_i(直径3mm のプロペラ流速計(中村製作所製).1点法)の経時変化例 を示す.各経時変化は同期されており,時間t=0は任意に 決めている.図から,本研究の実験における上流端での 氾濫水深は1.3 cm程度,下流端での氾濫水深は2.2 cm程 度,上流端での氾濫流速は1.3 m/s程度であることが判る.

表-3に既述の3方法に基づく本研究実験の入射フルード数の評価結果を示す.表から,①微小角柱から発生したマッハ波に基づく入射フルード数の評価値(3ケースの 平均値は2.66)がポイントゲージから発生したマッハ波 に基づくもの(3ケースの平均値は2.72)よりやや小さく, ②氾濫流の先端移動速度は非先端部の氾濫流速より大き いが⁴⁾,意外にも先端移動速度と非先端部の氾濫水深に 基づく評価値(3ケースの平均値は2.73)がポイントゲー ジから発生したマッハ波に基づくものとほぼ同じである ことが判る.①の微小角柱からの評価値がポイントゲー ジからのものより小さい理由として,水路側壁の影響に より氾濫流速が小さくなっていることが考えられる.② の入射フルード数がほぼ同じ理由として,測定精度の問 題もあるが,氾濫流表面部(底面部に比べて流速が大き い)で形成されたマッハ波であることが考えられる³⁾.

3.2 密度 図-3にメスシリンダーによる氾濫水の採水体積(左)と密度ρ(右)の平面空間分布例を示す.各図, 左(Row 1)が海側,右が陸側である.3行目の採水体積 が数値で示されている.これは土砂水がメスシリンダー から溢れた可能性があることを明示するためである.図 から,氾濫水密度の平面空間分布の傾向は既報実験³⁾の ものと基本的に同じであり,実験の再現性が認められる.

表-4に採水した氾濫水(実験値として有意なもの)の 全量から評価した平面空間平均の氾濫水密度(以下,単 に氾濫水密度)に関する実験結果をまとめて示す.()内 はメスシリンダー毎に評価した氾濫水密度を平均した値 で,採水した氾濫水の全量から評価したものに比べて小 さい.この傾向も既報実験¹⁾⁻³⁾と基本的に同じであり,実 験の再現性が認められる.表から,既報実験($h_1=6$ cm の場合)に比べて流勢が弱い(すべり台の高さが2.0 m¹⁾, 1.2 m²⁾, 1.0 m³⁾から0.5 mに減少した)ため,氾濫水密度 が既報実験の1.18~1.23 g/cm^{3 1)}, 1.09~1.16 g/cm^{3 2)}, 1.14 ~1.16 g/cm^{3 3)}に比べて低い範囲にあることが判る.

3.3 密度とフルード数の関係 図-4に2015年~2017 年^{1,-3)}の既報実験データも含めて入射フルード数F_{ri}と氾 濫水密度pの関係を示す.ここで,入射フルード数は既報 実験のものとの一貫性から全てビデオ撮影に基づく氾濫 流の先端移動速度と非先端部の氾濫水深を用いて評価し たものが採用されている(表-3参照).また,実験データ は氾濫流で水平水路部の水路底面が露出しない初期土砂 層厚が6 cmの場合のみに限定している.図から,本研究 の実験値を含めても,主要水理量である入射フルード数 が大きくなるにつれて,氾濫水密度が高くなることが判

図-4 入射フルード数F_{ri}と氾濫水密度ρの関係(h₁=6 cmの場合のみに限定.数値は中央粒径d₅₀)

表−3 入射氾濫流のフルード数						
宝 駩	h	入射フルード数				
夫 映 ケース	n_T (cm)	マッハ角 (側壁)	マッハ角 (中央)	先端移動 速度利用		
Case 1	6	2.28	2.58	2.67		
Case 2	6	2.79	2.66	2.62		
Case 3	6	2.92	2.93	2.89		

表-4 実験結果(()内はメスシリンダー毎の算術平均)

実 験 ケース	h_T (cm)	平均氾濫 水 密 度 ρ(g/cm ³)
Case 1	6	1.084 (1.051)
Case 2	6	1.072 (1.046)
Case 3	6	1.085 (1.052)

る³⁾.実験データがまだ少ないが、今回の実験を経ても、 高い方の氾濫水密度を包絡する式(1)³⁾は妥当と言える.

$$\rho = 0.056F_{vi}^{0.7} + 1 \tag{1}$$

また、中央粒径*d*₅₀が小さいほど大きめの氾濫水密度であり、氾濫水密度は入射フルード数ばかりでなく、土砂の 粒径(分布)にも依存すると言える³⁾.

4. おわりに より実際的な条件の実験を追加し,既 報実験データの妥当性を検証するとともに,氾濫水密度 の入射フルード数と中央粒径への依存性を再確認した. 参考文献 1)松富,川島:土論集B2(海岸工学), Vol.71, pp.355-360, 2015. 2)松富,今野,齋川,鎌滝,渡邉:土論集B2(海岸工 学), Vol.72, pp.397-402, 2016. 3)松富,今野,後村,今藤,鎌滝, 渡邉:土論集B2(海岸工学), Vol.73, No.2, pp.373-378, 2017. 4) Matsutomi *et al.*: Island Arc, Vol.19, Issue-3, pp.443-457, 2010.