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1. INTRODUCTION 

Climate change could cause significant impacts on 

water resources by resulting changes in the hydrological 
cycle. Precipitation is one of the pertinent parameters that 

influence hydrological cycle as an impact from climate 

change. The Global Climate Models (GCMs) were used to 

estimate the projection of climate change. However, The 

GCMs’ outputs cannot be used directly for climate change 

studies and do not provide a direct estimation of the 

hydrological response to climate change (Willems & Vrac, 

2011). It is due to the mismatch in the spatial resolution 

between the coarse resolutions of GCMs. Statistical 

downscaling is one of the methods for obtaining the finer 

resolution of GCMs output (Lafon et al., 2013). However, 

statistical downscaling requires the interpolation of GCMs 
grid to the coordinate of observation station (Okkan & 

Kirdemir, 2016). The objective of this study is to compare 

the interpolation methods for the statistical downscaling 

purpose.  

2. METHODOLOGY AND DATASET 

The study employed 2013 precipitation data of the 

second Modern-Era Retrospective analysis for Research 

and Applications (MERRA-2), which has the resolution of 

latitude 0.5O and longitude 0.625O. We interpolated the 

data to be a resolution with latitude 0.0125O and longitude 

0.0125O. 
The study also used three interpolation methods, 

namely: Inverse Distance Weights (IDW), Kriging 

Spherical (KS) and Kriging Gaussian (KG). IDW 

calculated the unknown points with a weighted average of 

the values available at the known points (Shepard, 1968) as 

shown in equation 1. 
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Where, 𝑃𝑥 is interpolated precipitation (mm), 𝑃𝑖 is the 

known precipitation points, 𝑤𝑖 is weighting factor, and 𝑑𝑖 

is the distance between the interpolated point and known 

points. 

Kriging methods not only consider the distance but also 

the information of known points for estimating the value of 
unknown point (Luo et al., 2008). The first step in kriging 

use the sample data to describe the spatial variation, which 

show in the form of a semivariogram using equation 2.  
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Where 𝑁(ℎ)  is the set of all pairwise Euclidean 

distances 𝑖 − 𝑗 = ℎ, |𝑁(ℎ)| is the number of distinct pairs 

in 𝑁(ℎ), and 𝑃𝑖 and 𝑃𝑗  are data values at spatial location 𝑖 

and 𝑗 ,respectively. Subsequently, we uses the 

mathematical functions, which has best fits with the 
semivariogram. This study used Spherical and Gaussian 

function as shown in equation 3 and 4, respectively.  
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     Where, 𝛾(ℎ) is the spatial variance in ℎ distance, c is 

the covariance of known point data, ℎ is the distance (m) 

and 𝑎 is the range (m). 

Thereafter, Kriging calculated the unknown point using 

equation 5, whereas the weighting factors were calculated 

using ordinary kriging as shown in equation 6.  
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Where 𝐴  is the matrix of semivarainces between of 

pairs of data points, 𝑏  is the vector of semivariances 

between each data point and the point to be predicted, 𝜆 is 

the vector of weights and 𝜙 is a Lagrangian for solving the 

equations. 

3. RESULTS  

Figure 1 shows the comparison of original data and the 

interpolation results for a one-day event of the dataset. In 

IDW result shows “bull’s eye effects” were produced. 

While both Kriging methods give more smother results in 

spatial distribution. The study also interpolated all days of 
the dataset and subsequently calculated the root mean 

square error (RMSE) and Nash-Sutcliffe efficiency (NSE) 

as shown in Table 1. 

Table 1. Comparison of validation parameters 

Parameter IDW KS KG 

RMSE 0.912 0.167 0.172 

NSE 0.998 0.999 0.999 

4. CONCLUSIONS AND DISCUSSION 

The results show all interpolation give acceptable 

values of validation parameters (Moriasi et al., 2007). 

Furthermore, both of Kriging methods produced smother 

results in spatial distribution. However, in some cases, the 

Kriging produce the negative weighting values (Deutsch, 

1996). The problem also was happened in this study, which 

interpolation results of particular day and location give 
negative values. Therefore, selecting interpolation methods 

should also consider the potential mistakes in calculation, 

such as negative values. Moreover, the further research 

should consider the other parameter that can influence the 

interpolation results, such as the altitude and wind direction. 
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Figure 1. Spatial comparison among the raw data and interpolation results.  
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