動的挙動を考慮したトポロジー最適化問題の感度の定式化およびその精度検証

東北大学	学生員	○遠藤拓真
	学生員	小川 竣
	正員	加藤準治
	正員	京谷孝史

まえがき

トポロジー最適化は寸法や境界形状のみならず、内 部の孔の発生を許容するなど、構造の形態そのものを 最適化するパワフルな設計ツールである. 例として, 一定体積の制約条件の下で、剛性最大化を目的とした 場合のトポロジー最適化結果を図1に示す. 図の赤色 部は固体、灰色部は空気を表している、このように複 雑な構造を可能にするトポロジー最適化は、多くの研 究成果が報告されている.しかし,それらは単に構造 の静的な力学問題を対象としているものが多く、動的 な力学問題まで踏み込んだ研究成果はまだ少ない.

動的挙動を考慮したトポロジー最適化で重要となる のは、感度解析の定式化とその精度の担保であろう. その感度解析については,荷重条件により感度に誤差 が生じる可能性があることが Jensen ら¹⁾によって指摘 されている. そこでは, 動的挙動を考慮した場合の感 度の定式化が行われているが、その精度検証が十分に 行われているとはいい難い.本研究では、まず Jensen らの手法を再現した上で,その感度の精度検証を行い, さらに静的問題には表れない動的問題特有の最適構造 が得られるかを力学的な観点から考察した.

2. 最適化問題の設定

動的荷重に対して, 全ひずみエネルギーを最小化す る最適な材料配置を決定することを考える.目的関数 とした最適化問題は以下のように表すことができる.

minimize
$$\phi = \int_0^T \frac{1}{2} \boldsymbol{u}^{\mathrm{T}}(t) \boldsymbol{K} \boldsymbol{u}(t) \,\mathrm{dt}$$
 (1)
subject to $h = V - V_0 \le 0, \ \rho_i \in [0, 1]$ (2)

ct to
$$h = V - V_0 \le 0, \ \rho_i \in [0, 1]$$
 (2)

$$\boldsymbol{M}\,\boldsymbol{\tilde{\boldsymbol{u}}}(t) + \boldsymbol{K}\,\boldsymbol{\boldsymbol{u}}(t) = \boldsymbol{f}(t) \tag{3}$$

$$u(0) = \dot{u}(0) = 0, \ t \in [0, T]$$
 (4)

M, Kはそれぞれ質量行列と剛性行列を示し,u(t), f(t)は時刻 t における節点変位ベクトルと外力ベクトルを 表す. (•) は時間微分を表し, T を荷重載荷時間とする. ρ_i は各要素の密度を表す設計変数で,材料の有無を表 を得る.陽に求まらない陰的微分項 ∂u/∂ρ_i, ∂u/∂ρ_i を す指標となる. 簡単のため減衰項を無視している.

図-1 静的荷重を受ける片持梁の最適化結果(剛性最大化)

(1) 構造解析

式(3)を解く時間積分法として中央差分法を採用した.

 $\dot{\boldsymbol{u}}_{t+\Delta t/2} = \frac{\boldsymbol{u}_{t+\Delta t} - \boldsymbol{u}_t}{\Delta t}, \ \ddot{\boldsymbol{u}}_t = \frac{\dot{\boldsymbol{u}}_{t+\Delta t/2} - \dot{\boldsymbol{u}}_{t-\Delta t/2}}{\Delta t}$ (5)式 (5) を式 (3) に代入し,時刻 t + Δt での変位を得る. さらに M を集中質量行列とすることで,連立方程式 の求解を必要とせずに解を求められる.

(2) 感度解析

設計感度は,目的関数を設計変数で微分したもので, 各要素が目的関数に与える影響度を表す. ここでは随 伴変数法を用いることで,設計感度を解析的に求めた.

随伴ベクトル **λ**(t)を導入し,目的関数を次に改める. $\bar{\phi} = \phi + \int_{0}^{T} \lambda^{\mathrm{T}}(t) \{ \boldsymbol{M} \ddot{\boldsymbol{u}}(t) + \boldsymbol{K} \boldsymbol{u}(t) - \boldsymbol{f}(t) \} \mathrm{dt} \quad (6)$

式(6)右辺の第二項は、式(3)より零ベクトルであるの で数学的一般性は侵さない.設計変数 pi で微分すると,

$$\frac{\partial \phi}{\partial \rho_{i}} = \frac{\partial \phi}{\partial \rho_{i}} + \int_{0}^{T} \lambda^{\mathrm{T}}(t) \frac{\partial}{\partial \rho_{i}} \{M\ddot{u}(t) + Ku(t) - f(t)\} \mathrm{d}t$$

$$= \frac{\partial \phi}{\partial \rho_{i}} + \int_{0}^{T} \lambda^{\mathrm{T}}(t) \left\{ \frac{\partial M}{\partial \rho_{i}} \ddot{u}(t) + \frac{\partial K}{\partial \rho_{i}} u(t) \right\} \mathrm{d}t$$

$$+ \int_{0}^{T} \left\{ \lambda^{\mathrm{T}}(t) M \frac{\partial \ddot{u}}{\partial \rho_{i}} (t) + \lambda^{\mathrm{T}}(t) K \frac{\partial u}{\partial \rho_{i}} (t) \right\} \mathrm{d}t$$

$$= \int_{0}^{T} \frac{1}{2} u^{\mathrm{T}}(t) \frac{\partial K}{\partial \rho_{i}} u(t) \mathrm{d}t$$

$$+ \int_{0}^{T} \lambda^{\mathrm{T}}(t) \left\{ \frac{\partial M}{\partial \rho_{i}} \ddot{u}(t) + \frac{\partial K}{\partial \rho_{i}} u(t) \right\} \mathrm{d}t$$

$$+ \int_{0}^{T} \left\{ M \ddot{\lambda}(t) + K \lambda(t) + Ku(t) \right\} \mathrm{d}t$$

$$+ \left[- \left(\frac{\partial u}{\partial \rho_{i}} \right)^{\mathrm{T}} M \dot{\lambda}(t) + \left(\frac{\partial \dot{u}}{\partial \rho_{i}} \right)^{\mathrm{T}} M \lambda(t) \right]_{t=T}$$
(8)

消去するため、随伴ベクトル入をつぎのように定める.

図-2 各荷重パターン(左図から(a),(b),(c))での最適化結果(上図)と感度(下図)

$$M\ddot{\lambda}(t) + K\lambda(t) = -Ku(t)$$
(9)

$$\dot{\lambda}(T) = \lambda(T) = 0 \tag{10}$$

式 (3)(4) と類似した問題となるが, 条件にt = Tでの 値が与えられているため, t = T - sと変数変換すれば, $\Lambda(s) = \lambda(T - s)$ を求める初期値問題に帰結する.

$$M\ddot{\Lambda}(s) + K\Lambda(s) = -Ku(T-s)$$
(11)

$$\dot{\mathbf{\Lambda}}(0) = \mathbf{\Lambda}(0) = \mathbf{0} \tag{12}$$

これは時間を未来から過去に遡るように解くことになる.ここで得られた随伴ベクトル * $\Lambda(s) = *\lambda(T-s)$ を式(8)に代入すれば,以下の感度式が導かれる.

$$\frac{\partial \bar{\phi}}{\partial \rho_i} = \int_0^T \frac{1}{2} \boldsymbol{u}^{\mathrm{T}}(t) \frac{\partial \boldsymbol{K}}{\partial \rho_i} \boldsymbol{u}(t) \, \mathrm{d}t \\ + \int_0^T {}^* \boldsymbol{\lambda} (T-s) \left\{ \frac{\partial \boldsymbol{M}}{\partial \rho_i} \ddot{\boldsymbol{u}}(t) + \frac{\partial \boldsymbol{K}}{\partial \rho_i} \boldsymbol{u}(t) \right\} \mathrm{d}t \quad (13)$$

(3) 解析モデルと数値計算例

図-1の問題と同じ設定で、荷重fが図-3のように時間変化する場合を考える. $f_{max} = 1$ となるまでの時間が異なる 3 パターン (a)(b)(c) で解析を行った.時間刻み幅は共通で $\Delta t = 2.5 \times 10^{-4}$ である.

表-1 最適化前後の目的関数値

	(a)	(b)	(c)
最適化前	9.41×10^{-3}	0.214	0.443
最適化後	3.52×10^{-4}	7.57×10^{-3}	5.85×10^{-2}

3. 結果および考察

(a)(b)(c) それぞれの最適化結果と感度を図-2 に示す. 感度は 2-(2) で解析的に求めた値(黒点線)と有限差分 法で求めた値(赤実線)を示した.有限差分法は計算 量が多い代わりに精度の良い感度を求めることができ るため、ベンチマークとして利用している.この 2つ に感度のずれが見えないことから、3つの荷重パター ン全てで高精度の感度を得られたことが分かる.また、 それぞれの目的関数値も大きく改善されている(表-1).

(c) は静的荷重を受ける図-1 とよく似た構造となっ た.一方で (a) は,梁の先端に材料が集まった構造と なっている.これらの違いは変位の伝達地点により説 明できる.(a) では T の大きさが十分ではないため,変 位が全体に伝達することなく計算を終了している.す なわち,梁の先端側のみ変形しているため,その部分 に材料が集まる結果となった.Tが一番大きな (c) は, 変位が固定端部まで伝達している.荷重変化もなだら かで,静的荷重とほとんど変わらない状態だったと考 えられる.(b) はその中間に位置し,固定端部に変位が 到達して間もない状態であった.したがって,かろう じて固定端部まで材料が配置される結果となった.

4. 結論

動的な構造挙動を考慮したトポロジー最適化におい て,高い精度の感度が得られることを確認した.また, 動的解析を行う時間範囲が感度に影響することが明ら かになった.これは静的解析では見られない現象である.

参考文献

 Jensen, J.S., Nakshatrala, P.B. and Tortorelli, D.A., 2014. On the consistency of adjoint sensitivity analysis for structual optimization of linear dynamic problems, *Struct Multidisc Optim*, 49:831-837