3次元雪崩シミュレーションに基づく危険度評価マップ

○東北大学工学部建築・社会環境工学科	学生会員	鬼頭 昂平
東北大学大学院工学研究科	学生会員	小谷 拓磨
東北大学大学院工学研究科	学生会員	山口 裕矢
東北大学災害科学国際研究所	正会員	森口 周二
東北大学災害科学国際研究所	正会員	寺田 賢二郎

1. はじめに

2017年3月27日に栃木県那須郡那須町のスキー場付近 の山岳地において中学生が雪崩に巻き込まれ死傷した.こ のような雪崩に起因する建物被害や人的被害を抑制するた めには,複雑な地形形状や植生,防護壁等の影響を加味し た正確な流下の予測が重要となる.これらの影響を考慮し つつ人的被害予測を行い,実務利用まで言及した研究は少 ない.従って雪崩斜面における人的被害危険度の空間分布 を3次元的な雪崩流下挙動における物理諸量から評価でき れば,より効果的な防災対策が可能になると考えられる. そこで本研究では,3次元安定化有限要素法を用いた雪崩 シミュレーションと雪崩による既存の衝撃力の計算手法と を組み合わせ,雪崩の衝撃力に対する人的被害の危険度の 空間分布を評価する手法を提案する.検証として,仮想斜 面上の雪崩現象に本手法を適用し,その有用性を確認した.

雪崩シュミレーションにおける3次元安定化 有限要素法の概要

本研究では、四面体一次要素を用いた3次元安定化有限 要素法によって任意の非構造地形における雪崩の流下挙動 を再現する.流体解析においては非圧縮性粘性流体とした 雪相と空気相との気液二相解析を用いる.支配方程式は次 の Navier-Stokes 方程式および連続式である.

$$\rho \frac{\partial u_i}{\partial t} + \rho u_j \frac{\partial u_i}{\partial x_j} - \rho f_i + \frac{\partial p}{\partial x_i} - \frac{\partial}{\partial x_j} \left\{ \eta(\dot{\gamma}) \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) \right\} = 0 \quad \text{in} \quad \Omega$$
⁽¹⁾

$$\frac{\partial u_i}{\partial x_i} = 0 \quad \text{in} \quad \Omega \tag{2}$$

ここに、 Ω は解析領域、 u_i は流速、p は圧力、 ρ は密度、 f_i は物体力、 $\eta(\dot{y})$ は粘性係数を表す.後述するように、雪 の粘性係数はせん断ひずみ速度 \dot{y} の関数となり、気相につ いては定数を与える.空間方向の離散化には式(1)、式(2) に SUPG/PSPG 法²⁾ による安定化有限要素法を適用する ことで得られる弱形式を、時間方向の離散化には Crank-Nicolson 法を用いた.また、自由表面の表現には界面捕捉 法である VOF 法³⁾ を適用し、界面関数 $\phi = 0.5$ の値を用 いた.雪の流動特性の表現には山口ら⁴⁾ による雪の流動表 現にビンガム流体モデルを用いる.ビンガム流体はせん断 強度を有する流体であり, せん断ひずみ速度 ý に依存して 粘性係数が大きく変化する性質を持つ.

3. 危険度評価に用いる衝撃力の算出方法

斜面の任意の位置における雪崩による人間への衝撃力は 数値計算によって算出される圧力 *P_{cal}* が斜面上に設置され た物体表面に及ぼす力の積分値として求めることができる が,斜面全体での衝撃力を効率的に求めるため,数値解析 シミュレーションで得られた流速の値を用いて,人間を模 擬した円柱に対する衝撃力を既存の算出式から斜面上の各 地点において計算する.

$$F_{emp} = k\rho A U^2 \tag{3}$$

ここで、 F_{emp} は円柱状の物体に作用する衝撃力、kは定数、 ρ は雪の密度、Aは物体の雪崩進行方向に直角な作用面積、 Uは流体の流速である、パラメータkを求めるために小 規模なスロープモデルについて、人間の大きさを想定した 円柱を設置した際の円柱に作用する衝撃力と式 (3)を用い た仮想の円柱に作用する衝撃力のそれぞれの最大値を比較 し、次式を満たすようなパラメータkを決定する.

$$\left(\int_{\Gamma} P_{cal} d\Gamma\right)_{max} = \left(F_{emp}\right)_{max} \tag{4}$$

ここで、Γは円柱表面である. 図-1にはスロープモデルの 概形と流下させる雪の形状を、図-2には斜面上に円柱を 設置したスロープモデルの外径を示す. また、解析に用い た各種パラメータを表-1に示す.

表-1 解析パラメータ

密度	内部摩擦角	粘着力	時間刻み
$(\text{kg} \cdot \text{m}^{-3})$	(°)	(N)	(sec)
350	15	100	5.0×10^{-3}

図-3に両スロープモデルの衝撃力の時系列変化をプロットし比較したものを示す.この結果に基づいて,本研究では*k*の値を2.22とした.

4. 仮想斜面へのマッピング例

前節で決定した k を用いて斜面上の各点において衝撃力 が人間に対して危険となる値を超える地点を危険域として

キーワード:有限要素法,雪崩,リスク評価

^{〒980-8572} 仙台市青葉区荒巻字青葉 468-1 災害科学国際研究所, TEL 022-752-2132, FAX 022-752-2133

図-1 スロープモデル(円柱なし)

マッピング処理することで斜面全体の危険度の空間分布を 表現する.まず,図-1のスロープモデルにおいて斜面表面 の各点における衝撃力の最大値を算出する.図-4は,得 られた衝撃力の最大値の分布図である.次に,人的危険度 評価マップの例として,津波によって人間が転倒すると言 われている衝撃力⁵⁾が 2000N 程度であることから,雪崩 においても同様に仮定し,斜面上でその値を超える位置を 赤,超えない位置を青色として危険度マップを作成した. 図-5 に作成した危険度マップ例を示す.この図より,本手 法により雪崩の危険範囲を空間分布として可視化できるこ とを確認した.本検証の設定条件では簡便なスロープモデ ルを用いているため地形状況の変化による危険度の変化は ほとんど見られなかったが,地形による影響がより卓越す

図-4 数値シュミレーション結果から算出された衝撃力の分布図

図-5 危険値として設定した衝撃力を超えた地点のマップ例

る実地形での解析では危険域と非危険域のより明確に区別 された空間的評価が期待できる.

5. 終わりに

本研究では、雪崩の衝撃力による人的被害に関する空間 的な危険度評価手法を提案した.今後は、実事例などを対 象として、より複雑な地形に対して本手法を適用し、検証 を行うことが課題として挙げられる.

参考文献

- 1) 日本建設機械化協会:新編防雪工学ハンドブック,森北出版 (1977)
- Brooks, A.N., Hughes, T.J.R.: streamline-upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, *Computer Methods in Applied MEchanics and Engineering*, Vol.32.1, (1982) pp.199-259.
- C.W. Hirt and B.D. Nichols: "Voluume of fluid method for the dynamics of free boundaries", J. Comp. Phys., 39 (1981) 201-225
- 4)山口裕矢,高瀬慎介,森口周二,寺田賢二郎,小田憲一,上石勲: 非ニュートン流体モデルを用いた雪崩の3次元非構造有限要 素解析,日本計算工学会論文集,Vol. 2017 (2017) p. 20170011.
- 5) 有川 太郎, 大坪 大輔, 中野 史丈, 下迫 健一郎, 高橋 重雄, 今村 文彦, 松冨 英夫: 遡上津波力に関する大規模実験, 海岸工学論 文集, Vol. 53 (2006) p.796800.