大型造波水路での巨礫移動実験とその数値モデルの検証

東北大学 大学院工学研究科	学生会員	○渡部真史
東北大学 災害科学国際研究所	非会員	Volker Roeber
電力中央研究所	正会員	吉井匠
東北大学 災害科学国際研究所	非会員	後藤和久
東北大学 災害科学国際研究所	正会員	今村文彦

1. はじめに

津波や台風等で発生する波浪で運搬された巨礫の移 動距離を数値モデルにより高精度で推定できれば、津 波や波浪の規模想定に応用でき、沿岸部の地域防災に 有用な情報を提供することができる。本研究では、大型 造波水路を用いて直方体ブロック移動実験を行い、そ の再現計算を行うことで、既往の巨礫移動モデルの精 度検証を行った。

2. 大型造波水路での巨礫移動実験

直方体ブロックの移動実験を、電力中央研究所の大 型造波水路(図 1)を用いて行った。実験前にブロックを 汀線(図 1 の 40 m 地点)に置き、波を入射後に高速カメ ラを用いてブロックの移動速度を推定した。波は図 1 の左側境界にある造波装置でソリトン波を発生させて 入射した。実験に用いたブロックの種類、入射波の初期 水位、ブロックの寸法、密度は表 1 の通りである。

3. 数値モデル

波の遡上計算に関しては、拡張型 Boussinesq モデル の BOSZ model (Roeber et al., 2010, 2012)を用いた。巨礫 移動モデルに関しては、巨礫の運搬プロセスの変化に 伴う巨礫と底面の接触時間の変化を経験的な摩擦係数 を導入することで巨礫の移動距離を推定する Imamura et al. (2008)のモデルと、巨礫の運搬プロセスを理論的に 導いた Nandasena et al. (2013)のモデルを用いた。BOSZ model で浸水計算と同時に巨礫移動計算を行うことで ブロックの移動速度および移動距離を算出した。

4. 実験結果・計算結果・議論

全ケース(Case 1~8)の水路実験結果と計算結果を図 1~4 に示す。Imamura et al. (2008)のモデルを用いた場合、

キーワード 高波・高潮、砂質堆積物、数値計算 仙台市青葉区荒巻字青葉 468-1 E305

図-1. 大型造波水路の寸法図

\backslash	ブロック	入射波の	ブロックの	密度
	の種類	初期水位 (m)	寸法 (cm)	(g/cm^3)
case 1	レンガ	0.10	5×6×7	2.1
case 2	レンガ	0.10	4×6×7	2.1
case 3	レンガ	0.25	5×6×7	2.1
case 4	レンガ	0.25	4×6×7	2.1
case 5	石灰岩	0.10	5×6×7	2.5
case 6	石灰岩	0.10	4×6×7	2.5
case 7	石灰岩	0.25	5×6×7	2.5
case 8	石灰岩	0.25	4×6×7	2.5

表-1. 水路実験のケース番号、ブロックの種類、入射波の初期水位、ブロックの寸法、密度

レンガで実験を行なったケース(Case1~4)では計算値は 実験値を高精度で再現できているが(図 1)、石灰岩で実 験を行なったケース(Case5~8)では、計算値が実験値を 大きく上回っている(図 2)。これは、Imamura et al. (2008) のモデルは水理実験で立方体のブロックのみを用いて 経験的な摩擦係数を作成したため、立方体の巨礫と同 様に移動速度が増加するに従って、運搬過程が滑動か ら転動に移転するブロックに適応した場合には再現性 は高い。一方、本研究で用いた石灰岩ブロックのように ブロックの密度が高く、形状が平らなものに関しては、 ブロックの移動速度が増加しても、滑動で動き続ける ため(図 2.4)、立方体の巨礫と運搬プロセスが異なる。 そのため、再現性が低くなったと考えられる。Nandasena et al. (2013)のモデルも同様に全ケースで実験値を高精 度に再現できなかった(図3,4)。この要因は、モデルで直 方体ブロックの運搬形態の変化を十分に再現できな かったことがあげられる(図 3.4)。

図-1. 実験値と Imamura et al. (2013)モデルの計算値の比 較 (Case 1~4)。実験値の○は転動、×は滑動でブロック が動いていたことを示す。

図-2. 実験値と Imamura et al. (2013)モデルの計算値の比

較 (Case 5~8)

図-3. 実験値と Nandasena et al. (2013)モデルの計算値の 比較 (Case 1~4)。計算値の黒線はブロックが転動で、そ れ以外は滑動で運搬されたことを示す。

図-4. 実験値と Nandasena et al. (2013)モデルの計算値の 比較 (Case 5~8)

6. 結論

本研究では、既往の巨礫移動モデルの精度検証の ため、大型造波水路を用いた直方体ブロックの移動 実験とその再現計算を行なった。その結果、直方体ブ ロックの移動速度の増加に伴う運搬形態の変化を十 分に再現できなかった。そのため、直方体ブロックの 移動距離や移動速度を高精度に再現するには既往モ デルのさらなる改良が必要である。

謝辞

本研究の水路実験は電力中央研究所の協力を得て、 実施された。本研究の一部は JSPS 特別研究員奨励 費(課題番号:16J01953)の補助を受けて実施された。 ここに記して謝意を表する。

参考文献

- Imamura et al., 2008. A numerical model for the transport of a boulder by tsunami. JGR Ocean. 113, C01008.
- Nandasena and Tanaka., 2013. Boulder transport by high energy: Numerical model-fitting experimental observations. Ocean Engineering. 57, 163–179.
- Roeber at al., 2010. Shock-capturing Boussinesq-type model for nearshore wave processes. Coastal Eng. 57 (4), 407– 423.
- Roeber and Cheung., 2012. Boussinesq-type model for wave transformation over fringing reefs. Coastal Eng. 70, 1– 20.