すべり分布の不確実性を考慮した津波発生シナリオの多様性

東北大学大学院 工学研究科	学生会員	○古屋	敬士
東北大学 災害科学国際研究所	正会員	越村	俊一
東北大学大学院 理学研究科		日野	亮太
東北大学大学院 理学研究科		太田	雄策
東北大学大学院 工学研究科	学生会員	井上	拓也

すべり断層を考慮してシナリオ設定を行った場合,断層 配置(位置,大きさ)と大すべり域配置(位置,大きさ), それぞれのパターン数を掛け合わせた数だけシナリオ数 が考えられるため,膨大なシナリオ数を想定しなくては ならない.そこで本研究では,起こりうる最大津波の即 時推定のため,均質すべり断層解析と不均質すべり断層 解析を組み合わせた効率的な多数シナリオ解析手法を提 案する.

a) Step1:均質すべり断層解析

Step1では均質すべり断層を用いた多数シナリオ解析か ら、高い津波高をもたらす断層配置を特定する.はじめ にEEWのMjとスケーリング則から断層面積Sと平均すべ り量Uaveを決定し、断層長さLと断層幅Wについて、L/W が2,3,4となる3通りの断層大きさを想定した。断層位置 (X,Y)は、EEWの震央位置が断層面内に含まれように、走 向方向に29通り、傾斜方向に9通り、合計261通りを想定 した.走向φ・傾斜角δ・深さDはSlab1.0から参照し、す べり角λは90°とした。この際、断層面がプレート境界範 囲に収まらないシナリオは除外した。以上の基準に基づ いて多数のシナリオを設定し、前述の手法を用いて解析 を行う。その解析結果から対象エリアに高い津波高をも たらす断層配置を特定し、水位予測点での最大津波高の 平均が上位となる10通りの断層配置を、Step2で微視的波 源特性を想定する際の断層配置として選定する。

b) Step2:不均質すべり断層解析

Step2では特性化波源モデル (杉野ら, 2014) を用いて, 不均質すべり断層シナリオ設定・解析を行う.シナリオ 設定の流れを図-1に示す.はじめに断層配置を選択し,断 層面を小断層に分割した.小断層数は30個前後となるよ うに,断層大きさに小断層サイズを調整して設定した.各 小断層の走向・傾斜角・深さはSlab1.0から参照し,すべ り角は90°とした.続いて,すべり分布を考慮して各小 断層のすべり量を決定する.大すべり域の割合*R*_Aは不確

1. 序論

今日の計算機演算性能の発達により,津波到達前に浸 水被害予測を行うリアルタイム津波シミュレーションが 可能となった(Koshimura et al., 2014). 一方,即時推定した 断層パラメータで単一シナリオのみの想定では津波波源 モデルの不確実性が十分に考慮されず,予測以上の津波 被害が生じる恐れがある.想定外の被害を防ぐには,多様 な津波発生シナリオの想定を瞬時に行う必要がある.特 にM8を超える大規模地震ではすべり分布の不確実性が波 源に多様性をもたらすため,より多くの津波発生シナリ オを考慮しなければならない.そこで本研究では,緊急地 震速報(EEW)に基づいて,すべり分布の不確実性を考慮 した数津波シナリオ設定・解析手法の構築を目的とする.

2. 解析手法

(1) グリーン関数の線形重ね合わせによる津波計算

本研究ではリアルタイムでの多数津波シナリオ解析 を行うため、事前に計算した二次元ガウス分布単位波 源(Tsushima et al., 2009)に対応するグリーン関数の線 形重ね合わせにより、即座に時系列水位を計算できる 解析手法を用いた.本手法では各シナリオについて、 Okada(1985)により初期地盤変動量を求めて津波波源と し、これを二次元ガウス分布の重ね合わせへ変換する ことで、各単位波源の変動量 a_i を算出する.続いて各単 位波源の変動量 a_i と対応する水位予測点 P_k のグリーン 関数 η_i^r を式(1)に従って線形重ね合わせし、水位予測点 P_k の時系列水位 η^r を求める.

$$\eta^k = \sum_{i=1}^n a_i \eta_i^k \tag{1}$$

(2) 効率的な多数シナリオ解析手法

EEWのMj・震源情報からプレート境界型地震の不均質

キーワード: リアルタイム解析,不確実性,シナリオ爆発,多数津波シナリオ,緊急地震速報 連絡先: 仙台市青葉区荒巻字青葉468-1, TEL: 022-752-2082, FAX: 022-752-2083

図-1 シナリオ設定の流れ:(a)断層配置を選択する.(b)小断層に分割する.(c)プレート境界データから,各小断層の走向・傾 斜角・深さを決定する.(d)大すべり域の大きさ・位置から,各小断層のすべり量を決定する.

実性を考慮して29~33%,35~39%,41~45%の3通りを 想定した.大すべり域のすべり量*U*_Aと背景領域のすべり 量*U*_Bは,それぞれ式(2)と式(3)より算出した.

$$U_A = 2U_{ave} \tag{2}$$

$$U_B = \frac{U_{ave} - U_A R_A}{1 - R_A} \tag{3}$$

また大すべり域位置は走向方向3通り,傾斜方向に2~3通 り位置を設定した.この基準で設定した多数シナリオに ついて解析を実施し,その結果から起こりうる最大津波 高を推定する.

3. 想定地震への適用

想定地震に本手法を適用し,起こりうる最大津波高の 推定を試みた.想定地震は北緯38.0°,東経143.0°,深 さ10kmを震源とする*M_{jma}* = 8.3の地震とし,EEWの推定 値もこれと同値とした.また,シナリオを評価する水位 出力点として仙台湾沖の水深50m以上地点に位置した6つ の水位予測点を使用した.

4. 解析結果

Mj8.3, 震央(38°N,143°E)の想定地震に本手法を適 用した結果を図-2に示す.ここでは、シナリオ数を絞り 込まず、かつ大すべり域位置を走向方向に4~7通り設定 した超多数シナリオ解析の結果を比較対象として用いた. 図-2より、僅かに過小評価があるものの、推定される最 大津波高を維持することができた.計算コストについて、 単純な多数シナリオ解析では27785秒要したが、本手法 では485秒で計算を終えることができ、計算量を98%削減 することが出来た.また、Mj8.3、震央(38°N,143°E) の想定地震にも同様の解析を実施した結果、高い精度と 計算量削減効果を確認することが出来た.

5. 結論

本研究では,EEWを用いて,すべり分布の不確実性を 考慮した多数シナリオ設定・解析による多様な津波発生 シナリオ即時推定手法を提案した.本手法を想定地震に 適用し,即時推定した起こりうる最大津波高推定値の精 度検証を行った結果,リアルタイムかつ高い精度で最大 津波高を推定することができた.

参考文献

- Koshimura, S. et al.: Real-time tsunami inundation forecasting and damage mapping towards enhancing tsunami disaster resiliency, American Geophysical Union, Fall Meeting 2014, San Francisco, United States of America, 15-19 December 2014, abstract #NH23B-05, 2014.
- Tsushima, H. et al.: Tsunami waveform inversion incorporating permanent seafloor deformation and its application to tsunami forecasting, J.Geophys. Res., 117, B03311, doi:10.1029/2011JB008877, 2012.
- Okada, Y.: Surface Deformation Due to Shear and Tensile Faults in a Half-Space, B. Seismol. Soc. Am., 75, 1135-1154, 1985.
- 杉野英治,岩渕洋子,橋本紀彦,松末和之,蛯澤勝三,亀田弘行,今 村文彦: プレート間地震による津波の特性化波源モデルの 提案,日本地震工学会論文集,Vol.14, No.5, 5.1-5.18, 2014.