3次元浮遊砂濃度分布可視化計測法の浮遊砂巻き上げ過程への適用

1. はじめに

海岸において発生する砕波は、多くの土砂を巻き上 げ輸送することで沿岸域における地形変化を支配する 1). しかしながら、砕波下において発生する複雑かつ3 次元的な乱流下における土砂の挙動を調べることは困 難であり、その輸送メカニズムはいまだ明らかにされ ていない. そこで, この数十年間, 輸送メカニズム解 明のため水理実験における浮遊砂濃度の画像計測がい くつか行われてきている. 画像計測法は, 水中におけ る浮遊砂濃度に依存する散乱光強度分布によって決定 される撮影画像の輝度分布に基づいて浮游砂濃度分布 を特定する計測法である 2)が,従来の画像計測法は水 槽側壁近傍の2次元的な濃度分布を計測するものであ り、3次元かつ複雑な砕波下の流れ場における浮游砂 輸送過程を十分に説明することができていない. そこ で本研究では浮游砂の3次元的な濃度分布を計測する 新たな画像計測法を開発し,矩形管路内での実験への 適用を行った.

2. 計測アルゴリズム・画像処理

本研究ではデジタルカメラおよびプロジェクタを用 いて浮遊砂濃度を計測する³⁾.カメラに対する奥行き方 向に色合いを変化させた照明(カラーパターン照明)を プロジェクタから照射し,浮遊砂による散乱光をデジ タルカメラで撮影する.これにより撮影される浮遊砂 の散乱光の色はカメラとの距離に応じて変化するため, 撮影画像から抽出した各色の輝度分布からそれぞれの 色の層内での輝度ピークを砂粒子として検出し,その 個数と位置から2次元的な浮遊砂数密度分布を決定で きる.各色に対応する奥行き方向座標を予め取得し,そ れをもとに合成することで1枚のカラー画像から瞬時 の3次元的な数密度分布分布を取得する. 東北大学工学部 学生会員 〇今田 遥介東北大学大学院工学研究科 正会員 三戸部 佑太東北大学大学院工学研究科 フェロー会員 田中 仁

なお,高浮遊砂濃度の領域の背後ではカメラ撮影ま たはプロジェクタからのカラー照明の陰となり,濃度 を過小評価してしまうため,カウントされた浮遊砂の 個数から計測不可能な領域の体積を算出し数密度の補 正を行う.

3. 計測実験

本計測法の精度を評価するため、一辺 10cm の正方形 断面を持つ透明アクリル製の水路を用いて試験計測を 行った(図-1).上流部のヘッドタンクでの水位と下流 端の放水口との高度差 H により流速を発生させる.管 路内には移動床区間を設け、東北硅砂 6 号(平均粒径 0.34mm)を敷き詰めた.移動床区間の流下断面は z 軸 方向において最大で 10mm まで狭まれており、局所的 に流速を強めることで浮遊砂を発生させる.上流端に は仕切り板が設置されており、その高さを上回る分の 水は管路外へ越流する.止水板で下流端の放水口をふ さいだ状態でヘッドタンクに貯水を開始し、越流が始 まってから放水口を開放して流速を発生させる.その 後も下流端での流量以上でヘッドタンクに水を供給し 続けることにより絶えず越流を発生させ,高度差 H を

キーワード;浮遊砂,画像計測,3次元計測

連絡先〒980-8579 宮城県仙台市青葉区荒巻字青葉 6-6-06 環境水理学研究室 Tel 022-795-7453 Fax 022-795-7453

実験中一定に保った.発生した浮遊砂にプロジェクタ からカラーパターン(カメラ手前から青・マゼンタ・赤・ 黄色・緑の5色)を照射し,その散乱光を高速カメラに より,フレームレート50fps,シャッタースピード1/250 秒,解像度 0.0174~0.0180 cm/pixel の条件で撮影した.

下流端には円形断面の鉄管が高さ・幅方向に各 5 本 ずつ,計 25 本格子状に配置されており,計測領域を通 過した水および浮遊砂を分岐させて大気に放出させる. 管路放水口から放出された硅砂を含む水を採取し,各 鉄管内を通過した流れにおける浮遊砂の質量濃度を計 測した.あらかじめ求めた砂粒子 1 個あたりの平均質 量(7.85×10⁻⁵ g/個)を用いて画像計測結果を数密度か ら質量濃度に変換し,採水結果と比較することで画像 計測の精度検証を行う.

4. 結果と考察

図-2 は H=60cm の条件下における, 流速発生から 30 秒後における撮影画像と, 格子間隔を 1cm 間隔に設定 して求めた浮遊砂の数密度分布を示している.本研究 で開発する計測法ではこのように 1 枚の撮影画像から 各色の輝度分布に対応する各層での浮遊砂数密度分布 を取得できる.

図-3 は、流速発生から 63 秒から 65 秒における鉄管 入口における数密度分布の時間平均と 65 秒から 67 秒 の 2 秒間に採取された水に含まれる硅砂の濃度分布を 表している. 画像計測結果は採取結果に比べ過大評価 になっているが、底面付近や 6cm < y < 8cm の地点にお いて高浮遊砂濃度が発生している傾向が一致し、空間 的な分布の特徴は捕らえることができた.

5. まとめ

本研究では,カラーパターン照明を用いて瞬時の3次 元的な浮遊砂濃度分布を得る新たな画像計測法を開発 し,矩形断面の管路に適用を行った.将来的には,本計 測法を造波水槽での計測に適用させていく.

参考文献

- 2) 灘岡和夫・上野成三・五十嵐竜行: 砕波帯内の 三次元的大規模渦構造と浮遊砂の現地観測,海岸 工学講演会論文集, Vol.34, pp.21-25, 1987
- 2) 佐藤槇司・久保田洋次: ビデオ画像を用いた砕

図-3 画像計測より得られた分岐部前方における浮遊砂 濃度分布の時間平均(a)と下流端で採取された水に 含まれる浮遊砂濃度分布(b) 波点付近の浮遊砂現象の解析,海岸工学論文集,

波点付近の浮遊砂現象の解析, 海岸上字論文集, Vol.38, pp.251-255, 1991

3) 今田遥介・三戸部佑太・田中仁: カラーパターン照明を用いた 3 次元浮遊砂濃度分布の可視化計測法の開発,土木学会第 71 回年次学術講演会講演概要集, II-218, 2016