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1. Introduction
When simulating shore lines and rivers with a relatively

coarse mesh, since the boundary is curved, the slip boundary

condition is often used. The slip boundary condition is rel-

atively easy to use in an explicit scheme, but in an implicit

scheme, such as the stabilized finite element formulation, it is

more difficult. The objective of this study was to apply a weak

imposition of the slip boundary condition on curved boundaries

for shallow water flow utilizing Nitsche’s method, which was

proposed by Joséet al (2014) for Stokes flow1). We researched

an SUPG finite element formulation of the shallow water equa-

tions. Specifically, we looked into the weak imposition of the

slip boundary condition in a curved boundary and the effects

on it when the penalty parameter for stabilization was changed.

For the simulations in this paper we used a theoretical river

modeled after a sine curve and with similar slope and Man-

ning’s roughness coefficient as those of a real river.

2. Methods
In the shallow water equations we simplify the Navier-Stokes

Equations to use depth averaged velocity. The general form of

the shallow water equations can be expressed as:
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whereU = (H, u1H, u2H)T = (U1, U2, U3)T is the vector

of the conservation variables,n is Manning’s roughness coeffi-

cient,g is gravitational acceleration,ν is horizontal kinematic

viscosity andz is the height of the bottom surface from the
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mean water level.H is the total water depth, andu = (u1,u2)T

is the depth averaged velocity.A i and K i j are derived from

the Euler and viscous flux vectors andR represents all other

components that might enter the equations, including external

forces.

The boundary conditions used in our simulations can be de-

fined as:

U = G onΓG, (5)
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∂U
∂x j

ni = H onΓH , (6)

n+ · U = GS and t+ · K i j
∂U
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ni = HS onΓS. (7)

Equation (5) and equation (6) are the Dirichlet and Neumann

boundary conditions respectively. Equation (7) is the slip

boundary condition. Heren = (n1, n2)T is a normal vector to

the boundary andt = (t1, t2)T = (−n2,n1)T is a tangent vector.

In equation (7) we definen+ andt+ as such,n+ = (0,n1,n2)T ,

t+ = (0, t1, t2)T . Specifically, we use the free slip boundary

condition whereGS = 0 andHS = 0.

The semi-discrete SUPG formulation of equation (1) with

the Nitsche’s type weak imposition of the slip boundary condi-

tion can be written as:∫
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In the above equation we used the stabilization parame-

ter τSUPG and shock-capturing parameterνSHOC proposed by

Takaseet al (2010)2) wherensb is the number of slip bound-

ary segments andhb
S is the length of slip boundary segments.
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Fig. 1 Domain and boundary conditions

Fig. 2 Simulation target mesh Fig. 3 Depth averaged velocity

Cpen is a constant penalty parameter. The last four terms of the

equation are derived by a weak imposition of Nitsche’s method.

Equation (8) is discretized through integrating by time with

the generalized-α method, which was first proposed in Jansen

et al (2000) and developed for the Navier-Stokes equations of

incompressible flows3).

We use Gaussian quadrature to calculate integrals in our pro-

gram, which is the most common numerical integration method

in finite elements4). We use 3 quadrature points for elements

and 2 quadrature points for boundary segments.

3. Result
In this paper we simulated the flow of a theoretical river and

observed how the flow changed when the penalty parameter

Cpen was changed, as well as demonstrated the effectiveness of

the slip boundary condition for a rough mesh in our results.

In the simulations, we used a slope of 2%,n = 0.1 and

ν = 0.001. The domain and boundary conditions are shown in

figure 1. The combination of inflow and outflow conditions cor-

responds to the uniform flow of a straight river. The simulation

target mesh is shown in figure 2. Figure 3 shows the depth av-

eraged velocity vectors of the entire domain whenCpen = 102.

The results for each value ofCpenand the corresponding results

near the boundary are shown in figure 4.

In the subsequent figure you see that the depth averaged veloc-

(a)Cpen= 102 (b) Cpen= 103

(c) Cpen= 104 (d) Cpen= 105

Fig. 4 Depth averaged velocity vectors

ity vector is tangent to the edge of the river. This shows that

the slip boundary conditions are effective in the simulation. As

the penalty parameter gets smaller, the effect of stabilization

on the equation also gets smaller giving more accurate results.

We were able to reduce the penalty parameter to 102 before the

resulting calculations diverged.

4. Conclusion
The data presented in this study significantly improves our

understanding of slip boundary conditions and how they relate

to the SUPG formulation of the shallow water equations. We

demonstrated that the slip boundary conditions were effective

in the results of our simulations, and that we were able to obtain

results that converged even when using a very small stabilizing

penalty parameter. This made it possible to achieve more accu-

rate calculations, better representing theoretical values.

As we gather a mathematical model, we can move forward

with more studies to broaden our current simulation models.

Further research should include comparing our numerical sim-

ulation results with that of naturally occurring rivers and im-

proving our mathematical model to better represent naturally

occurring phenomena.
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