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1. Introduction mean water levelH is the total water depth, and= (ug, u)"
When simulating shore lines and rivers with a relativelg the depth averaged velocity; andK;; are derived from

coarse mesh, since the boundary is curved, the slip boundheyEuler and viscous flux vectors aRdrepresents all other

condition is often used. The slip boundary condition is retomponents that might enter the equations, including external

atively easy to use in an explicit scheme, but in an implidibrces.

scheme, such as the stabilized finite element formulation, it iSThe boundary conditions used in our simulations can be de-

more dificult. The objective of this study was to apply a wedfined as:

imposition of the slip boundary condition on curved boundaries Uu=aG onlg, (5)
for shallow water flow utilizing Nitsche’'s method, which was ou

) Kijz——n =H only, (6)
proposed by Jé@set al (2014) for Stokes flol. We researched 0X;
an SUPG finite element formulation of the shallow water equa- ou

. . . _ . n,-U=Gs andt,-Kjj—n =H onl’'s. (7
tions. Specifically, we looked into the weak imposition of the ’ S Pk T s (0

slip boundary condition in a curved boundary and tife@s Equation (5) and equation (6) are the Dirichlet and Neumann
on it when the penalty parameter for stabilization was changbdundary conditions respectively. Equation (7) is the slip
For the simulations in this paper we used a theoretical rivgsundary condition. Hera = (n;,n,)" is a normal vector to
modeled after a sine curve and with similar slope and Mathe boundary antl = (t1,t,)" = (—np, ny)7 is a tangent vector.
ning’'s roughness cdéicient as those of a real river. In equation (7) we defina, andt, as suchn, = (0,n;,n)7,

2. Methods t, = (0,t1,t))7. Specifically, we use the free slip boundary

In the shallow water equations we simplify the Navier-Stok&8ndition whereGs = 0 andHs = 0.

Equations to use depth averaged velocity. The general form of "€ semi-discrete SUPG formulation of equation (1) with
the shallow water equations can be expressed as: the Nitsche’s type weak imposition of the slip boundary condi-
tion can be written as:

ouU ouU 0 ouU
A= - Z ki) -R=0, 1
ot o 0>q( "axj) (1) fWh ou" Alhﬂ—Rh do
o ot %
awh h
c 10 o 0 1 + K{]au do- [ wh.Hhar
Ar=[gH-1 2u; Of, A= -u, U u|, (2 o o 0% 61 Th
2
—ulz Uz U gH-u; 0 2w +Zf TSUPGAka— f(Uh)
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-vup, 0 v -vu; v O ouU
¥ 3 - -wh Kh— dl"—f t, - W") Hsdl
0 00 o oo frs(n+ )(m P ) rg(+ JHs
_ _ wh
Kop=|-vu, 0 v|, Kop=|-vw v 0], _f( th]aa )(n+ U —Gs)dr
|0 00 2w, 0 2 )
= Cpen h h
0 v(n, - W")(n, - U" - Gg)dr =0, (8)
R = |-gHZ - Z¥Iy | @) where
h h h
_qH .z _ I VERE hy o OUT  andY 9 [ n 90U} pon
gHﬁXz H% Uz r(U) ot +AI 6X| aX| KI] 6XJ R™ (9)

_ T _ T
whereU = (H, l_JlH’ UZ_H) ~ (Us, U_Z’ Us)" is the vector 1, yhe abhove equation we used the stabilization parame-
of the conservation variables s Manning’s roughness ctie ter Tsupg and shock-capturing parametesioc proposed by
cient, g is gravitational acceleratiom, is horizontal kinematic Takaseet al (20109 whereng, is the number of slip bound

. . . . S -
viscosity andz is the height of the bottom surface from th%ry segments arlug is the length of slip boundary segments.
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Fig. 2 Simulation target mesh Fig. 3 Depth averaged velocity

Cpenis a constant penalty parameter. The last four terms of '@e
equation are derived by a weak imposition of Nitsche’s method

Equation (8) is discretized through integrating by time with
the generalized- method, which was first proposed in Janse[g
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Fig. 4 Depth averaged velocity vectors

ity vector is tangent to the edge of the river. This shows that
the slip boundary conditions aréective in the simulation. As

the penalty parameter gets smaller, thee of stabilization

on the equation also gets smaller giving more accurate results.
We were able to reduce the penalty parameter tdokfore the
resulting calculations diverged.

Conclusion

The data presented in this study significantly improves our
understanding of slip boundary conditions and how they relate
the SUPG formulation of the shallow water equations. We

et al (2000) and developed for the Navier-Stokes equationsdoefmOnstrateol that the slip boundary conditions wékective

in the results of our simulations, and that we were able to obtain

incompressible flow&.

We use Gaussian quadrature to calculate integrals in our p}ro—
gram, which is the most common numerical integration method
in finite elementd. We use 3 quadrature points for elemen

and 2 quadrature points for boundary segments.
3. Result

esults that converged even when using a very small stabilizing

enalty parameter. This made it possible to achieve more accu-

fate calculations, better representing theoretical values.
As we gather a mathematical model, we can move forward
with more studies to broaden our current simulation models.
In this paper we simulated the flow of a theoretical river ardirther research should include comparing our numerical sim-
observed how the flow changed when the penalty paramefgttion results with that of naturally occurring rivers and im-
CpenWas changed, as well as demonstrated ffectveness of proving our mathematical model to better represent naturally
the slip boundary condition for a rough mesh in our results. occurring phenomena.
In the simulations, we used a slope of 2%,= 0.1 and Raferences
v = 0.001. The domain and boundary conditions are shown}h Jo£ M. Urquiza, Andé Garon and Marie-Isabelle Farinas, Weak

. o ] -~ imposition of the slip boundary condition on curved boundaries
figure 1. The combination of inflow and outflow conditions cor- for Stokes flow, Journal of Computational Physics, Vol. 256, pp.

748-767, 2014.

responds to the uniform flow of a straight river. The simulatiaZ) Shinsuke Takase, Kazuo Kashiyama, Seizo Tanaka and Tayfun

target mesh is shown in figure 2. Figure 3 shows the depth av

eraged velocity vectors of the entire domain wi@a, = 10%.

The results for each value Gfenand the corresponding results

near the boundary are shown in figure 4.
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