2016 年台風 10 号による岩泉町乙茂における洪水・氾濫痕跡から見えること

秋田大学 〇正員 松冨英夫 学生員 今野史子 非会員 鎌滝孝信

1.はじめに 2016年8月30日の台風10号豪雨で人的被 害が目立った岩手県の小本川における洪水・氾濫の理由 として①乙茂地区中心部(道の駅.図-1)から直線距離で 約2km上流に位置する河川の大蛇行による河川水位の上 昇,②その直下流における増水状態での洪水流の高速化 とそれに起因する河畔林の流木化,③川幅が約180mの乙 茂橋地点における左岸側から河川流心方向へ約50m突き 出た乙茂橋へのアクセス道路の盛土と橋梁での流木滞留 による河積減少などが考えられる.本研究は乙茂地区と その上流約3km区間における洪水・氾濫の最大痕跡水面 位や地盤高,浸水深を実測し,上記理由などを実証する.

2. 現地調査 現地調査は2016年9月12, 16, 18, 21, 22, 29日と10月9日の7日間行った. 主な調査項目は洪水・氾濫の最大痕跡水面位の水準測量である.水準測量点は明瞭かつ不動な目印があるところとし,測点間の位置関係や水平距離はGoogle earthから把握・評価することとした.水準測量には自動レベルと長さ5mの標尺を用いた.

3. 調査結果と考察

3.1 最大痕跡水面位などの空間分布と流況 図-2に最 大痕跡水面位(○地点)と地盤高(△や▲地点)の調査 結果を示す.数値は水色が最大痕跡水面位(上段:建築 物の前面または側面,下段:側面または背面)で,白色 が地盤高である.○地点の白色数値も地盤高で,ここで は浸水深が評価できる.黄色数値は氾濫域中に堆積した 漂流物の上端を最大痕跡水面位としたものである.これ らは楽ん楽ん近くの国道455号沿いの三級基準点(図中の ☆地点,基455-29,TP約32.0m)と対応付けられている.

表-1に最大痕跡水面位と地形図(基盤地図情報¹⁾)から 評価した水面や河床勾配などの結果を示す.表-2にMann ing式に基づく常・射流の判定例を示す.hは水深,gは重 力加速度,Iは(河床)勾配で,Manningのnは0.03,河川 断面形は広矩形としている.図-3に図-2と表-1に基づく 最深河床高,最大痕跡水面位と下述の推定流況を示す.

図-2,3と表-1,2から以下が判断される. ①A-B間の水面勾配は1/250,河床勾配は1/585で,水面勾 配が河床勾配より大きい.B-C間の水面勾配は逆勾配, 河床勾配は1/248で,C地点は湾曲部の始点(一般に最大 水深となる地点)である.洪水の水深を5~9m,Manning のnを0.03,エネルギー補正係数を1.0,河川断面形を広矩 形としたときの限界勾配は1/194~1/236(表-2参照)で, A-B間の河床は緩勾配,B-C間の河床は限界勾配程度と判 断される.したがって,A-B間の水面形はM₂(低下背水) 曲線,B-C間の水面形はB-F間における160°近い湾 曲による流れの堰止め効果のためと考えられる. ②C-D間の水面勾配は1/164と大きく, D-E間の水面勾配 は1/397と緩い. C-D間の大きな水面勾配はC-F間の河床 勾配が限界勾配より大きいことやD地点で川幅が広くな ることから(C-D間はS₂曲線), D-E間の緩い水面勾配は E-F間が湾曲部の始点であること, D-H間における170°近

図-2 最大痕跡水面位などの空間分布(Google earthに加筆) 連絡先(〒010-8502秋田市手形学園町1-1 TEL 018-889-2363) い湾曲とF地点における狭窄(川幅約75m)による堰止め 効果から(D-E間はS₁曲線),理解できることである.し たがって,C-E間で眺水が形成されたと考えられる. ③E-H間の水面勾配は1/116,河床勾配は1/241で,水面勾 配が河床勾配より大きい.D-F間の水面勾配を一定とし たとき,F-H間の水面勾配は1/105,河床勾配は1/259で, 河床はかろうじて緩勾配である.したがって,F-H間の 水面形はM₂曲線と判断され,川幅増加を考慮しなければ ならないが,この間で流速が大きくなったと考えられる. ④H-J間の水面勾配は1/417,河床勾配は1/599の緩勾配で, 水面勾配が河床勾配より大きい.これは氾濫域幅が増加 したためと考えられる.したがって,H-J間の水面形は M₁(堰上げ背水)曲線で,H-K間における80°近い湾曲によ る流れの堰止め効果によると考えられる.

⑤J-K間の水面勾配は1/266,河床勾配は1/228で,水面勾 配が河床勾配より緩い.J-M間で見れば,水面勾配は1/ 310,河床勾配は1/248で,この傾向は明瞭となる.河床 は限界勾配より緩く,水面形はM₁曲線と判断される.こ れには乙茂橋へのアクセス道路の盛土や盛土・橋梁部で の流木滞留による流れの堰止め効果が関係していよう. ⑥乙茂橋路面上の最大痕跡水位(5.80m)が周辺より高 い.左岸側にある橋梁へのアクセス道路の盛土や盛土・ 橋梁部での流木滞留による流れの堰止めが認められる. ⑦乙茂橋左岸側における流れの堰止めや比較的急な下り 勾配(0.93/75=1/81)の局所陸上地形の影響もあってか, M-NとN-P間の水面勾配(各々1/113と1/166)がE-H間のも のに劣らず大きい.乙茂橋左岸側の国道455号上やその左 側(川から離れる方向)で支配断面(限界水深)が形成さ

区間	部 (m)	離 (m)	(m)	(m)	勾配	床高 (m)	差 (m)	勾配	床勾配	備考
A-B	363	363	A:8.24	1.45	1/250	40.82, 40.20	0.62	1/585		A-C
B-C	196	559	B:7.41	-0.40	-1/490	40.20, 39.41	0.79	1/248		1/532
C-D	212	771	C:8.20	1.29	1/164	39.41, 38.46	0.95	1/223		C E 1/250
D-E	298	1,069	D:8.26	0.75	1/397	38.46, 36.95	1.51	1/197		C-E 1/230
E-F	75	1,144	E:9.02			36.95, 36.48	0.47	1/160	地形図	0.19 m
F-G	70	1,214	-	5.28	1/116	36.48, 36.20	0.28	1/250	(1/283)	1/105
G-H	466	1,680	-			36.20, 34.41	1.79	1/260		1/105
H-I	287	1,967	H:6.28	0.58	1/495	34.41, 33.99	0.42	1/683	基盤図	1/417
I-J	264	2,231	I:6.12	0.74	1/357	33.99, 33.49	0.50	1/528	(1/283)	1/41/
J-K	388	2,619	J:5.88	1.46	1/266	33.49, 31.79	1.70	1/228		1/210
K-M	210	2,829	K:6.12	0.47	1/447	31.79, 31.08	0.71	1/296		1/510
K-L	220		L:3.30	0.21	1/1,048	31.79, 34.40	-2.61	-		横断方向
M-N	132	2,961	M:6.36	1.17	1/113	31.08, 30.36	0.72	1/183		1/122
N-P	118	3,079	N:5.91	0.71	1/166	30.36, 29.87	0.49	1/241	地形図	1/155
O-P	340	-	-	1.12	1/304	33.20, 29.87	3.33	-	(1/465)	猿沢川
P-Q	472	3,551	P:5.69	1.45	1/326	29.87, 27.70	2.17	1/212		1/224
Q-R	493	4,044	Q:6.41	1.44	1/342	27.70, 26.79	0.91	1/313	基盤図	11554
R-S	468	4,512	R:5.88	0.43	1/1,088	26.79, 25.49	1.30	1/360	(1/388)	
Q-U	328	3,879	-	1.18	1/278	27.70, 26.84	0.86	1/381		
T-U	152	3,727	T:6.07	0.58	1/262	27.44, 26.84	0.60	1/422		1/262
U-V	118	3,997	U:6.09	0.45	1/262	26.84, 26.80	0.04	1/422	-	
V-W	161	4,158	V:5.68	1.84	1/88	26.80, 25.49	1.31	1/123		W:5.15 m
S-W	216	-	S:6.75	1.60	1/135	25.49, 25.49	0	-		横断方向
※太字は基盤地図情報から評価したもの.										

表-1 現地調査結果

表−2 常流・射流の判定例(*n*=0.03)

							-	
h (m)	\sqrt{gh} (m/s)	Ι	<i>u</i> (m/s)	<i>h</i> (m)	\sqrt{gh} (m/s)	Ι	<i>u</i> (m/s)	
5	7.00	1/100	9.73		8.85	1/100	13.33	
		1/194	7.00	8		1/200	9.43	
		1/200	6.88			1/227	8.85	
		1/300	5.62			1/300	7.70	
		1/400	4.87			1/400	6.67	
6	7.67	1/100	11.00		9.39	1/100	14.43	
		1/200	7.85	9		1/200	10.21	
		1/206	7.67			1/236	9.39	
		1/300	6.35			1/300	8.33	
		1/400	5.50			1/400	7.22	
7		1/100	12.20	(汁)	細かけけ財法			
	8.28	1/200	8.71	(工)	住)柄がりは豹伽			
		1/217	8.28					
		1/300	7.04					
		1/400	6.10					

図-3 洪水・氾濫の最大痕跡水面位に基づく推定流況 れ,その下流で局所的な跳水が形成されたと考えられる. ⑧最大痕跡水面位の空間分布から乙茂橋直下流の氾濫に 猿沢川の洪水が影響したと考えられる.

⑨左岸側のP-R間の水面勾配は1/334で、1/313の河床勾配 (緩勾配)よりやや緩い.右岸側のT-V間はP-R間と逆で ある.この理由として左岸側の広い平坦な氾濫域の存在、 Q-S間における90°近い湾曲と氾濫域幅の増加が考えら れる.実際、広い平坦な氾濫域の存在と湾曲による堰止 め効果でR-S間の水面勾配は1/1,088と非常に緩く、C-D間 やF-H間、J-K間の状況と異なる.一方、右岸側の水面形 はM2曲線の可能性がある.実際、下流のV-W間やS-W間

(河川横断方向)の水面勾配が非常に大きくなっている. 4.2 乙茂中心部左岸側における氾濫流速 乙茂中心部 左岸側の最大痕跡水面位時における建築物の前面と側面 での水位差は上流から順にふれんどり一岩泉で0.49m(= 3.33-2.84), 楽ん楽んで0.35m(=3.14-2.79), 岩泉乳業で 0.23m(=2.80-2.57), 道の駅で0.40m(=2.37-1.97) である. 前面浸水深h_fを用いる式(1)²⁾から評価される氾濫流速u は順に3.8, 3.7, 3.5, 3.1m/sである.風間ら³⁾は乙茂中心 部左岸側の氾濫水深が2m以上のところでの氾濫流速は 3m/s以上であることを数値解析により示しており,著者 らの評価と整合している.式(1)は水平床上の津波氾濫流 を対象として導かれたものである.国道455号沿いの路面 勾配は約1/710の下り勾配であるが,この程度の勾配であ れば式(1)は洪水氾濫流にも適用できることが判った.

 $u = 0.66\sqrt{gh_f} \tag{1}$

4. 主な結果 ①乙茂地区中心部(道の駅)から直線距離 で約2km上流に位置する河川の大蛇行部で水位が上昇 し,最大水深は深いところで9m以上に達した.他の対象 区間における最大水深は6m前後で,下流に位置する基準 点赤鹿における最大水深6.6mよりやや浅い.②大蛇行部 の直下流で洪水流が高速化し,河畔林が流木化した.③ 乙茂橋へのアクセス道路の盛土と盛土・橋梁部における 流木滞留により,左岸側橋台付近で水位が上昇した.④ 本洪水・氾濫災害は小本川のような山地河川で,洪水調 節を行うところもない川沿いの平坦地は全てが氾濫域

(複断面河川の高水敷相当)であることを改めて示した. 参考文献 1)国土地理院:基盤地図情報サイト, http://www.gsi. go.jp/kiban/index.html, 2016.12.16参照. 2) Matsutomi et al.: Inunda tion flow velocity of tsunami on land, Island Arc, Vol.19, pp.443-457, 2010. 3)風間ら:平成28年台風10号による二級河川小本川での 洪水発生状況の考察,土木論文集B1, Vol.73, No.4.2017.(印刷中)