東北大学工学部	学生員	瀬水 太朗
東北大学大学院工学研究科	学生員	干場 大也
東北大学大学院工学研究科	正員	加藤 準治
東北大学大学院工学研究科	正員	京谷 孝史

1. はじめに

多孔質体であるラティス構造は, 剛さと軽さの両立が可 能で,さらに放熱効果も期待できるなど優れた性能を有す る.近年では積層造形技術の発展に伴い,複雑な多孔質幾(2) ラティス構造と弾性係数 何構造も製造可能となっていることから,様々な分野でラ 目的に見合った最適なラティス構造を設計で求めることは 容易ではない、そこで,本研究ではラティス構造の最適レ イアウトを数理的に求める設計法を提案することを目的と する.ここでは,ラティス構造が発現する巨視的な力学特 性を均質化法に基づく数値材料実験によって評価し,その 最適なトポロジーを求める手法を提案する.

2. 設計変数および最適化問題の設定

ここではマクロ構造の剛性を最大にするための最適化問 題を設定する.そこで,要素ごとの正規化密度(材料体積 比)を設計変数 s_i(i = 1,2,···,N)とし,目的関数 f(s) およ び等式制約条件h(s)は以下のようにした.

minimize
$$f(s) = \mathbf{F}^{\mathrm{T}} \mathbf{d}$$
 (1)
subject to $h(s) = \int s_i \, \mathrm{d}\Omega - \hat{V} = 0$ (2)

$$\int_{\Omega} \int_{\Omega} \int_{\Omega$$

 $s_L \leq s_i \leq s_U$ (3)

ここで, F および d はそれぞれマクロ構造全体系の外力 ベクトルと節点変位ベクトル, su および sL は設計変数の上 下限値である. Ŷ は材料の占める体積を表す. f(s)を最小 化するためには目的関数の最小値を求めるために感度(勾 配)を求める必要がある.

- 3. 本研究におけるラティス構造のトポロジー最 適化
- (1) 離散化した支配方程式

力のつりあい式は以下のように離散化できる.

$$F = Kd$$

= $\int_{\Omega} B^{\mathrm{T}} \mathbb{C}^{\mathrm{H}} B \mathrm{d}\Omega d$ (4)

ここで K はマクロ構造の剛性マトリックス, B は B-マト リックス, \mathbb{C}^{H} は弾性係数, Ω はマクロ構造が占める領域で ある.トポロジー最適化では弾性係数 \mathbb{C}^{H} を $\mathbb{C}^{H} = \mathbb{C}^{H}(s_{i})$ と 密度の関数とおくことで、各要素の密度を変化させながら 最適な構造を求めていく.

本研究では,図-1,図-2に示すような2種類のラティス ティス構造を積極的に導入するような傾向にある.しかし,構造(本研究ではそれぞれノーマルラティス,クロスラティ スと呼ぶものとする)を対象に基準座標に固定した座標軸 を用いて直交異方性(立方体晶)を仮定した.そのため,弾 性係数は式(5)のように表すことができ,求めるべき成分 は \mathbb{C}_{11}^{H} , \mathbb{C}_{12}^{H} , \mathbb{C}_{44}^{H} の3つである.

ここでは,それらのラティス構造を便宜上,マクロ構造 の有限要素一つを代表するものとして数値材料実験を行い、 密度と弾性係数の関係を築く.図-3はこれによって得られ た 3 成分 $\mathbb{C}_{11}^{\mathrm{H}}$, $\mathbb{C}_{12}^{\mathrm{H}}$, $\mathbb{C}_{44}^{\mathrm{H}}$ と設計変数 s_i との関係を示してお り, 内挿関数とするために曲線に近似した.

図-1 ノーマルラティス

図-2 クロスラティス

図-3 弾性係数曲線

その結果得られた近似曲線は以下のようになった. ノーマルラティスの弾性係数

$$\mathbb{C}_{11}^{11} = 150.13s_i^3 - 80.81s_i^2 + 65.46s_i \tag{6}$$

$$\mathbb{C}_{12}^{\rm H} = 120.94 s_i^{3} - 88.14 s_i^{2} + 24.92 s_i \tag{7}$$

$$\mathbb{C}_{44}^{\rm H} = 33.718s_i^3 + 4.53s_i^2 + 0.46s_i \tag{8}$$

クロスラティスの弾性係数曲線

ωH

$$\mathbb{C}_{11}^{\mathrm{H}} = 82.12s_i^{3} + 25.67s_i^{2} + 6.76s_i \tag{9}$$

$$\mathbb{C}_{12}^{\mathrm{H}} = 65.16s_i^{3} - 21.05s_i^{2} + 13.44s_i \tag{10}$$

$$\mathbb{C}_{44}^{\rm H} = -2.23s_i^3 + 42.98s_i^2 - 2.32s_i \tag{11}$$

ちなみに To ら¹⁾は,数値材料実験ではなく,実際の実験に よって近似曲線を求めている.

4. 均質化法に基づく数値材料実験

数値材料実験とは,ユニットセル(本研究では各ラティス 構造)の有限要素モデルに理想的な境界条件を与え,マク 口応力を得るための数値実験である.ユニットセルに3種 類のマクロひずみE = (1,0,0), (0,1,0), (0,0,1)を与え, そ れに対応するマクロの応力を求めことで,式(12)より弾性 係数 C^H を得ることができる.

$$\Sigma = \mathbb{C}^{\mathsf{H}} E \tag{12}$$

5. 感度解析

つりあい方程式 Kd = Fを制約条件とする目的関数 fの 設計変数 s_i に関する感度 $\partial f / \partial s_i$ は以下のようになる.

$$\frac{\partial f}{\partial s_i} = -d^{\mathrm{T}} \frac{\partial K}{\partial s_i} d$$
$$= -\int_{\Omega} E^{\mathrm{T}} \frac{\partial \mathbb{C}^{\mathrm{H}}}{\partial s_i} E \mathrm{d}\Omega \qquad (13)$$

式 (13) は,マクロ材料剛性マトリックスの微分項 $\partial \mathbb{C}^{\mathrm{H}} / \partial s_i$ さえ計算すれば容易に目的関数の感度を得ることができる ことを示している.

6. 最適化結果例

図-4は,マクロ構造に境界条件を与え,クロスラティス を使って最適化をした例である.今回はラティス構造をよ り多く見せるため,材料(マクロ構造全体の密度)は全体の 30%とし,密度の範囲を0.1~0.7とした.

7. 結論

数値材料実験の結果から,クロスラティスの方がノーマ ルラティスより, せん断方向の弾性係数が卓越しているこ とが分かった.実際にマクロ構造にせん断応力が大きくか かるような境界条件のもと最適化を行うと, ミクロ構造に クロスラティスの弾性係数を用いたほうがノーマルラティ スを用いるよりも変形が小さかった.このことから,マク ロの境界条件に合わせて適切なラティス構造を選ぶことで, 変形がより小さい最適な形を作ることができる.

参考文献

L. Cheng, P. Zhang, E. Biyikli, J. Bai, J. Robbins, and A. To., "Efficient Design Optimization of Variable-Density Cellular Structures for Additive Manufactureing: Theory and Experimental Validation'