1. 序論

2011 年 3 月の福島第一原子力発電所の事故により、 環境中に大量の放射性物質が放出された。これに伴い, 放射性物質を含む廃棄物が管理型最終処分場で処分さ れることにより,廃棄物中の放射性物質が浸出水とと もに環境中へ漏出してしまう可能性が懸念される。

そこで本研究では、最終処分場から環境中への放射 性物質の拡散を抑制する隔離層のCs保持能向上を目的 とし、Cs保持材として有効だと考えられる鉱物(ゼオラ イト3種、イライト2種、バーミキュライト)に着目し、 各鉱物の Cs の収着特性について検討した。

2. 実験方法

2-1 使用材料

試験に用いた鉱物試料は、ゼオライト3種(以下 Z_A,Z_B,Z_Cとする), イライト 2 種(以下 I_Y,I_Wとする), バ ーミキュライト(以下 V とする)の 6 種類である。表-1 に含水比、陽イオン交換容量(CEC)、放射性セシウム捕 捉ポテンシャル(RIP)を示す。CEC はセミミクロ Schollenberger 法 ¹⁾により測定し, RIP は Takeda らの 方法 2)を用いて分析した。

実験に用いた浸出水は,盛岡市リサイクルセンター より採取した。pHは7.20,SSは27.5 mg/Lであった。 また,実験には孔径 0.45 μm のメンブレンフィルター でろ過したろ液を使用した。ろ液中の主な元素濃度を 表-2 に示す。

	$\mathbf{Z}_{\mathbf{A}}$	$\mathbf{Z}_{\mathbf{B}}$	$\mathbf{Z}_{\mathbf{C}}$	I_{Y}	I_{W}	V
含水比(%)	2.4	5.3	6.6	1.4	2.0	0.7
CEC(cmol/kg)	83	99	152	79	N.A.	N.A.
RIP(mol/kg)	62	81	N.A.	2.7	4.5	11
N.A.:未					未測定	

表-1 鉱物の理化学特性

キーワード: 最終処分場 浸出水 Cs 鉱物 収着 連絡先:岩手大学(盛岡市上田 4-3-5 TEL019-621-6449)

岩手大学 学生会員 〇野呂田将史, 伊藤美穂 岩手大学 正会員 石川奈緒, 伊藤歩, 海田輝之

表-2 浸出水の元素濃度

Ca(g/L)	K(g/L)	Mg(mg/L)	$Cs(\mu g/L)$	Rb(mg/L)
2.00	1.66	1.40	24.9	2.55

2-2. 実験手順

2-2-1 収着動態

3連のバッチ法で行った。50 mL 容量の遠沈管に鉱物 0.2 g, Cs 溶液 20 mL を混合した。Cs の初期濃度は 10 mg/L となるように調整した。振とう機を用いて 120 rpm, 25°Cで, 30min, 1h, 3h, 6h, 1d, 3d, 5d, 7d, 10d の 振とう時間をそれぞれ設けた後, 試料を採取した。採取 試料を孔径 0.45 μm のメンブレンフィルターによりろ 過した。ろ液中の Cs 濃度を誘導結合プラズマ質量分析 装置(ICP-MS, Thermo, iCAP Qc)で測定した。

2-2-2 収着等温線

3 連のバッチ法により収着等温線を求めた。50 mL 容量の遠沈管に鉱物 0.2 g, Cs を加えた浸出水 20 mLを 混合した。浸出水に設定濃度となるように Cs を添加し、 Cs 添加浸出水の初期濃度は、24.9 µg/L(無添加)、0.1、 0.5, 1, 5, 10, 100 mg/Lの7段階に設定した。

振とう機を用いて 120 rpm, 25℃で7日間振とう後, 試料を孔径0.45 μmのメンブレンフィルターによりろ 過した。ろ液中の Cs 濃度を ICP-MS, 他元素濃度を ICP 発光分析装置(Shimadzu,ICPE-9000)で測定した。

結果および考察

3-1 収着動態

図-1 にゼオライト(Zc)、バーミキュライトの振とう 時間に対する Cs 収着率を示す。7日後にはどの鉱物も ほぼ収着平衡に達していることが示された。

Zcは振とう30分後には収着率が98.8%まで急速に増 加したのに対し、バーミキュライトの場合は振とう時

間とともに緩やかに増加しており,鉱物によって収着 速度が異なることが示された。

図-1 ゼオライト(Z_c),バーミキュライト Cs 収着動態 3-2 収着等温線

図-2に6種類の鉱物におけるCsの収着等温線を示す。 いずれの鉱物においてもLangmuir モデルには適合し なかったが, Freundlich モデルに高い決定係数(R²)で 適合した。Freundlich モデルは以下の式によって表さ れる。

$q_e = K_F C_e^n \qquad \cdots (1)$

$q_e: 収着量[\mu g/kg]$ $C_e: 液相平衡濃度[\mu g/L]$

 K_F : Freundlich 係数 n: Freundlich 指数 表-3 に求めた係数と \mathbb{R}^2 値を示す。ゼオライト 3 種は n がほぼ 1 であるため、Cs の収着に対して濃度依存がほ とんどないことを示した。一方、イライトとバーミキュ ライトは n が 1 以下であることから、Cs の収着に対し て 濃 度 依 存 が あ り 、低 濃 度 の 方 が 分 配 係 数 $K_d(K_d=q_e/C_e)$ が高くなるため、浸出水中の Cs 濃度がよ り低濃度の場合に効率的に Cs を収着できる可能性が示 唆された。

各鉱物で得られた Freundlich モデルの *Ce* に浸出水 中の Cs 濃度 24.9 µg/L(表-2)を代入することで各鉱物に ついて実際の浸出水中の Cs 最大収着量が得られる。表 -4 に求めた最大収着量を示す。ゼオライトは 3 種類と も Cs 収着量は 15×10^3 µg/kg 以上であるのに対し, イ ライトとバーミキュライトは $1.5 \sim 8.0 \times 10^3$ µg/kg と低 かった。Cs 最大収着量と CEC および RIP について, Pearson の積率相関分析を行った結果, CEC とは相関 がなく(R = 0.86, p> 0.05), RIP とは高い相関を示した (R = 0.95, p< 0.05)。したがって,各鉱物における浸出水 中の Cs 収着量は RIP で推定できる可能性が示された。

表-3 Freundlich モデルにおける係数と R²値

	\mathbf{Z}_{A}	Z_B	$\mathbf{Z}_{\mathbf{C}}$	I_{Y}	I_{W}	V
K_F	595	996	1053	1410	136	364
n	1.02	0.95	1.00	0.54	0.75	0.76
R^2	0.98	>0.99	>0.99	0.95	0.92	0.98

表-4 浸出水における Cs 最大収着量(×10³µg/kg)

ZA	\mathbf{Z}_{B}	Zc	Iy	Iw	V
15.6	21.4	26.6	8.0	1.5	4.2

4. まとめ

本研究では、6種の鉱物を用いて最終処分場浸出水中 のCsの収着特性について検討した。6種類の鉱物は全 てLangmuir モデルには適合せず、Freundlich モデル に適合することが確認された。また、収着量に関して、 ゼオライト3種は浸出水中のCs濃度に依存せず、高い 収着能を持つことが示された。今後は、未測定の CEC,RIPを測定し再度収着量との相関分析を行う。ま た、浸出水中のCs濃度の変化により他元素濃度がどの ように変化するのか検討する必要がある。

謝辞

最終処分場浸出水の採水にご協力頂きました,盛岡 市環境部の皆様に感謝申し上げます。

[参考文献]

1)土壤環境分析法編集委員会,土壤環境分析法,博友社,1997.

2)Takeda et al., J.Environ.Radioact.,137,119-124,2014.