1.はじめに 津波氾濫水の密度 ρ は津波荷重だけで なく、津波の遡上高(遡上距離)や土砂の堆積状況、 例えば堆積厚や津波氾濫域長(面積)に対する土砂堆 積域長(面積)の比にも影響すると考えられる.した がって、氾濫水密度は津波の再現計算・想定計算や土 砂堆積域長を基礎データとして評価する歴史津波の規 模にも影響を与える.しかし、遡上高や堆積厚、土砂 堆積域長と津波氾濫域長比の密度依存性を主目的とし た研究は実験的にも行われたことがない.

本研究は工夫を凝らした水理実験に基づいて¹⁾,歴 史津波の規模評価に影響する土砂堆積厚(分布を含 む),土砂堆積域長と津波氾濫域長比(≤1),津波遡上 高の密度依存性を検討する.

2.実験とデータ解析の方法 土砂は仙台海岸の
2011 年東北津波の浸水域で採取したものを用いた.表

-1 に実験ケース毎の使用土砂の粒度特性例を示す. 「仙台海岸(混合)」は仙台海岸の3地点で採取した使 用後土砂の混合を意味する. 粒径加積曲線の代表例と して「二の倉前川」のものを後に示す(図-5参照).4 種類の土砂の粒度特性に大差はない.実験水路は簡易 に高シールズ数を確保するため,すべり台状の開水路 とした.ただし,すべり台の下端には土砂を敷詰める 水平水路部を設け,水平水路部の下流端には土砂を含 んだ氾濫水を採水するために緩い上り勾配のジャンプ 台を,また氾濫水を遡上させるためにそのジャンプ台 に引き続き粒径 850~2000 µm の砂を貼り付けて粗度 を高めた緩斜面を設けた.実験水路の概略,測定器具 (メスシリンダー群)の配置などを図-1 に示す.

津波氾濫流はすべり台上端の水平部にゲート付きの 貯水槽を設置し、ゲート急開流れで模擬した.ゲート はすべり台上端の水平部の斜面開始点直背後に位置す る.すべり台上端の水平部の高さは 1.2 m、水路幅は 0.3 m、貯水槽の諸元は高さ 0.5 m、幅 0.3 m、奥行 0.3 mとし、貯水深 h_U やすべり台の斜面勾配 S_1 、斜面と水平 水路接続部の曲面部の長さ、水平水路部の長さ L_s 、緩 い上り勾配のジャンプ台の高さ h_s と斜面勾配 S_2 、ジャ ンプ台下流端とメスシリンダー群の先端間の距離 L_G (本実験では $L_G=0$)、ジャンプ台に引き続く緩斜面の 長さと斜面勾配 S_3 、実験前の土砂厚(量) L_T は試行錯 誤して決定した.**図-1**に示した実験水路の諸元は試行 錯誤後の最終的なものである.

密度の実験では、氾濫水はすべり台を流下し、水平 水路部に敷詰められた土砂を巻き込み、下流端の緩勾 配のジャンプ台を駆け上がり、空中に飛出す.空中に 飛出した土砂を含む氾濫水の一部は氾濫水の落下域に 秋田大学 学生員〇今野史子 正員 松冨英夫

図−1 実験水路の概略,測定器具の配置と諸記号の定義

土砂採取地	L_T (cm)	中央粒径 (mm)	均等 係数	曲率 係数
营派业合团	2	0.28	2.42	1.077
11111111111111111111111111111111111111	6	0.32	2.41	1.232
小安国土南	2	0.31	-	-
小塚原八南	6	0.31	_	-
一の合品川	2	0.32	2.16	1.272
	6	0.33	2.19	1.116
仙台海岸	2	0.28	_	_
(混合)	6	0.30	2.59	1.157

表−1 実験前土砂の粒度特性例(密度実験における評価)

おいて手前側へ約 45°傾けて格子状に密に設置したメ スシリンダー群(外径 42 mm,内径 40 mm,秤量 250 cm³ のものを流れ方向に 8 本,水路横断方向に 8 本の計 64 本)に飛込む.あらかじめ各メスシリンダーの重量を 量り,氾濫水が飛込んだ後の各メスシリンダーの重量 を量れば,氾濫水の体積はメスシリンダーから直接読 み取ることができるので,氾濫水の密度とその空間分 布が評価できることになる.

土砂堆積・遡上高(遡上距離)の実験では,水平水 路部で土砂を巻き込んだ氾濫水は下流端のジャンプ台 を駆け上がり,ジャンプ台に引き続く一様勾配の緩斜 面を遡上する.ジャンプ台以後の緩斜面域は舌状に伸 びた土砂堆積域とその上流域の非常に厚さの薄い堆積 域に大別される.舌状部を有意な堆積域と判断し,流 れ方向は5 cm間隔で,水路横断方向は8等分(9測点) して,ポイントゲージにより格子状に堆積厚を測定し た.実験条件を表-2にまとめて示す.表中,*M_{sD}*は密 度実験,*M_{sR}*は土砂堆積・遡上高実験で使用した土砂 の質量である(他の記号は図-1参照).実験では炉乾 燥後に自然放置して冷ました土砂を水平水路部に敷詰 めた.実験回数は各ケース1回とした.

3. 結果 図-2 に氾濫水密度による遡上高の違いを 示す. 遡上高は水路横断方向の位置で異なり, 凡例の 最大と最小はその最大値と最小値を示す. 図-3 に氾濫 水密度の土砂堆積域長・津波氾濫域長比への影響を示 す. 図には,「仙台海岸」として使用後の土砂による実 験結果も示している. 図-4 (a)~(d)に初期土砂厚毎の

キーワード:氾濫水密度,津波堆積物,実験

連絡先(〒010-8502 秋田市手形学園町 1-1 TEL 018-889-2363)

	土砂採取地	$h_U(\mathrm{cm})$	$S_1(^\circ)$	$L_{S}(\mathrm{cm})$	h_S (cm)	$S_2\left(^\circ\right)$	$S_3(^\circ)$	L_T (cm)	$M_{SD}(\mathbf{g})$	M_{SR} (g)	平均氾濫水密度 (g/cm ³)
Case 1-1	- 芝派北 今切	25	20	155	23	12	7.3	2	15,500	15,500	1.135 (1.118)
Case 1-2	加供扣う切	25	20	155	23	12	7.3	6	42,700	41,600	1.092 (1.077)
Case 2-1	小坛百十声	25	20	155	23	12	7.3	2	11,500	10,000	1.134 (1.119)
Case 2-2	小塚原八南	25	20	155	23	12	7.3	6	35,300	30,200	1.102 (1.094)
Case 3-1	一の合前川	25	20	155	23	12	7.3	2	14,500	17,000	1.103 (1.086)
Case 3-2		25	20	155	23	12	7.3	6	36,800	38,500	1.104 (1.078)
Case 4-1	仙台海岸	25	20	155	23	12	7.3	2	11,500	9,500	1.128 (1.104)
Case 4-2	(混合)	25	20	155	23	12	7.3	6	39,300	39,100	1.158 (1.129)

表−2 実験条件と密度の実験結果

図-2 氾濫水密度の遡上高(遡上距離)への影響

図-3 氾濫水密度の土砂堆積域長・津波氾濫域長比への影響

氾濫水密度と土砂堆積厚の空間分布に関する実験結果 を示す.各図左手前が海側,右奥が陸側である.図-5 に土砂堆積・遡上高実験前後の粒径加積曲線の比較例 を示す.実験前後で曲線に大差がないことが判る.

4. おわりに 本研究で得られた主な結果は次の通りである.①津波遡上高(遡上距離)は氾濫水密度ρが大きくなるほど低くなるが、実際の遡上高は地形やその変化し易さの兼ね合いに依存する.②津波氾濫計算では氾濫水密度の考慮が必要な場合がある.③津波氾濫域長と土砂堆積域長は異なることが考えられ、土砂堆積域長のみからの古津波の規模推定は危険な場合がある.④氾濫水密度が大きくなるほど、土砂堆積厚は厚くなる傾向が確認できた.⑤粒径加積曲線は実験前のものと実験後の緩斜面に堆積したもの(土砂堆積・遡上高実験で得たもの)とでほとんど差がない.

謝辞:一般財団法人漁港漁場漁村総合研究所の H27 年度研 究費助成を受けた.記して謝意を表する.

参考文献 1)松富・川島:津波氾濫流の密度に関する基礎実 験,土木論文集 B2(海岸工学), Vol.71, No.2, pp.355-360, 2015.

