1	1+	•	ж	1-
1.	19	υ	Ø	

石炭鉱山の坑道上の地表沈下現象には主に盆上沈下と浅 所陥没がある.緩慢な現象である盆上沈下と比べて,浅所陥 没は突発的な現象であるため発生の予測が困難である.石 炭化度が低く,地表から比較的浅い位置に分布している亜 炭は主に残柱式で掘削され,浅所陥没が起きやすい.亜炭 田が多く存在する東海地方や東北地方では現在も亜炭廃坑 空洞が多く残されており,陥没事故が多く起こっている.本 研究では,浅所陥没が起こりやすい残柱式で掘削された亜 炭廃坑空洞を対象に,有限要素モデルを用いた極限荷重解 析によって,経年劣化に伴う陥没の危険度を評価する.こ こで用いる極限荷重解析は,完全塑性体に対して比例載荷 を行う際の極限荷重を線形計画問題を通して求めるもので ある.

2. 極限荷重解析の概要

極限荷重を求める問題を下界定理に基づいて,以下の式 を満たす静的可容応力場 σ_{ij} のうち荷重係数 λ を最大にす るものを探すものとする.

$$\frac{\partial \sigma_{ij}}{\partial x_j} + \lambda b_i = 0 \qquad \text{in } V \qquad (1)$$
$$\sigma_{ii} n_i = \lambda t^0 \qquad \text{on } S_t \qquad (2)$$

$$f(\sigma_{ii}) \le 0$$
 in V (3)

*S*_{*i*} は表面荷重が与えられた境界,*V* は全領域を示す.また, *t*⁰_{*i*} は単位表面荷重,*b*_{*i*} は単位体積力である.任意の運動学 的可容な塑性流動速度場を*v*_{*i*} とすると,完全塑性体を想定 していることから仮想仕事式は以下のようになる.

$$\int_{V} \sigma_{ij} \dot{\varepsilon}_{ij}^{\mathrm{p}} \,\mathrm{d}V = \lambda \left(\int_{S_{t}} t_{i}^{0} v_{i} \,\mathrm{d}S_{t} + \int_{V} b_{i} v_{i} \,\mathrm{d}V \right) \tag{4}$$

有限要素法を適用して離散化すると,各要素のBマトリックスをずらして重ね合わせた全体系の行列を $[\bar{B}]^{T}$,全要素の静的可容応力を $\{\sigma\}$,単位荷重 t_i^0 , b_i に対応する全節点の荷重ベクトルを $\{F\}$ として,式(4)は以下の式のようになる.

$$[\bar{B}]^{\mathrm{T}}\{\sigma\} = \lambda\{F\}$$
(5)

さらに,式(5)を満たす静的可容応力{*σ*}は次式で表すことができる.

$$\sigma\} = \lambda \left\{ \sigma_e \right\} + \left\{ \sigma_r \right\} \tag{6}$$

図-1 Mohr-Coulomb の降伏曲面の形状

ここに, {*σ_e*} は節点単位荷重 {*F*} とつり合う弾性応力, {*σ_r*} は荷重 {0} とつり合う応力であり, それぞれ次式を満たす.

$$[\bar{B}]^{\mathrm{T}}\{\sigma_e\} = \{F\} \tag{7}$$

$$[\bar{B}]^{\mathrm{T}}\{\sigma_r\} = \{0\}$$
 (8)

降伏基準の具体的な関数として,ここでは Mohr-Coulomb の降伏基準

$$f(\boldsymbol{\sigma}) = \sqrt{\left(\frac{\sigma_x + \sigma_y}{2} + \tau_{xy}^2\right)} - c\cos\phi + \left(\frac{\sigma_x + \sigma_y}{2}\right)\sin\phi \le 0 \quad (9)$$

を用いる.その降伏曲面は図-1のようである.この滑らか な降伏曲面を8枚の接平面で覆い,凸多角錐(八角錐)に置 き換える.図-2に示すように,中心Oから放射状に等間隔 で出る8つの単位ベクトル n_k (k = 1, 2, ..., 8)を考える. n_k を β 倍すると降伏曲面に到達するとし,そのときの降伏曲 面上の応力を σ'_k とすれば,以下の式が成立する.

$$f(\boldsymbol{\sigma}_k) = f(\beta \boldsymbol{n}_k) = 0 \tag{10}$$

この σ'_{k} における降伏関数の勾配ベクトル $\partial f / \partial \sigma |_{\sigma'_{k}}$ をそれ 自身の長さで割ったものを N_{k} とすると, N_{k} は図-2,図-3 に示すような降伏曲面上の外向き単位法線ベクトルになり, N_{k} に垂直な平面が σ'_{k} における接平面になる.こうして求 めた8枚の接平面について,原点からの距離を R_{k} とし,[N]と $\{R\}$ をそれぞれ

$$[N] = [N_1, N_2, \dots, N_8]^{\mathrm{T}}$$
(11)

$$\{R\} = \{R_1, R_2, \dots, R_8\}^{\mathrm{T}}$$
(12)

Key Words: 亜炭廃坑空洞, 極限荷重解析, 安定性評価

〒 980-8579 仙台市青葉区荒巻字青葉 6-6-06, TEL 022-795-7489

図-3 八角錐で近似した降伏曲面

とすると,降伏関数 $f(\sigma) \leq 0$ は図-3 を見れば分かるように, 以下の線形不等式として表すことができる.

$$[N]\{\sigma\} \le \{R\} \tag{13}$$

したがって,極限荷重解析は次のように定式化される.

maximize	λ
subject to	$[\bar{B}]^{\mathrm{T}}\{\sigma_e\} = \{F\}$
	$[\bar{B}]^{\mathrm{T}}\{\sigma_r\} = \{0\}$
	$[N] \left(\lambda \left\{ \sigma_e \right\} + \left\{ \sigma_r \right\} \right) \leq \{R\}$

これは,変数 $\{\lambda, \sigma_r\}^{\mathrm{T}}$ について線形の目的関数を線形制約 条件の下で最大化する線形計画問題であり,シンプレック ス法によって解くことができる.

安定性評価解析結果 3.

残柱式で掘削された亜炭廃坑の断面図は図-4のようにな る.愛知県の春日井市の潮見坂地区において浅所陥没が発 生した亜炭廃坑空洞の地表からの平均深度は12.1mであり、 深度 30m になるとほとんど浅所陥没が発生しなくなると報 告されている¹⁾.また,廃坑空洞の幅は10mほどのものが 多い.以上のことから,廃坑空洞の幅をw,地表面から空洞 天盤までの深さをhとすると,w = 10 mで一定とし,h = 10,20,30mの3ケースを考え,図-5のような有限要素モデ ルに自重のみを単位荷重として加える極限荷重解析を行う.

解析では,空洞天盤の経年劣化を想定し,内部摩擦角 φ を固定し粘着力 cを変化させて,自重によって破壊が生じる $(\lambda = 1)$ ときの粘着力 cを図-6のように求めた.内部摩擦角 場合において $\lambda = 1$ となるような粘着力c(t/m²), σ_c (t/m²) を求めると,表-1のようになった.

坑空洞の断面概略図

図-5 解析モデル

表-1 $\lambda = 1$ のときの土質定数 c, ϕ と一軸圧縮強度 σ_c

	<i>h</i> =	10 m	h = 20 m		h = 30 m	
ϕ	с	σ_c	с	σ_c	с	σ_c
0°	31.3	62.7	43.7	87.3	62.5	125.0
5°	24.2	52.8	33.7	73.5	48.3	105.4
10°	18.6	44.4	25.3	60.3	36.2	86.4
15°	17.4	45.3	18.4	48.0	26.3	68.6
20°	18.8	53.8	13.9	39.6	19.1	54.5
25°	20.4	64.2	14.9	46.8	14.5	45.6
30°	22.2	77.0	16.2	56.2	12.6	43.7
35°	24.3	93.3	17.7	68.0	11.6	44.5
40°	26.8	115.0	19.4	83.3	10.7	46.0
45°	30.0	145.0	21.5	103.6	10.0	48.4

4. まとめ

本研究では,有限要素法を用いた極限荷重解析によって, h = 10, 20, 30 m の 3 ケースにおける荷重係数 λ と土質定数 である粘着力 c, 内部摩擦角 ϕ の関係を調べ, この関係か ら,自重によって破壊が生じる $\lambda = 1$ のときの地盤の粘着 力 c と内部摩擦角 ϕ の値を求めた.このことによって,地 盤がどの程度劣化しているか,すなわちその地盤の粘着力 c, 内部摩擦角 ϕ の値が分かれば, 現時点での安定性が評価 できる.

参考文献

- 江崎 哲郎:浅所陥没とその対策,充てん,第43 川本 眺万:亜炭掘削跡空洞の充填事業の変遷, 第43号 2003
- 2)·般社団法 充填技術協会, 2015.
- 3) Maier, G.: Shakedown theory in perfect elastoplasticity with associated and nonassociated flow-laws: a finite element linear programming approach, Meccanica 4, 3, pp.250-260, 1969.