鋼トラス橋のリダンダンシー解析における部材破断の動的効果に関する基礎的検討

1. はじめに

国内外の橋梁に関する事故^{1),2)}を通してリダンダン シー評価の重要性が高まってきている. リダンダンシー 評価ガイドライン³⁾では静的リダンダンシー解析におい て,健全時の破断想定部材の断面力の衝撃係数倍の力を 逆向きに作用させる(以下,破断荷重とする)方法を用 いることで部材破断の動的効果を考慮している. この衝 撃係数は減衰定数 5% の1 自由度系モデルの動的応答値 から 1.854 と仮定されている³⁾. しかし, 部材破断後の トラス橋全体の挙動は極めて複雑かつ非線形性が強く なることがあるため、その妥当性が十分に確認されて いるとはいえない.これを受けて後藤ら4)は材料非線形 を考慮していないモデルを用いて動的解析を行い、トラ ス橋の端部に最も近い引張り斜材の破断時は衝撃係数 が1.854 に近いことを結論づけている. そこで、本研究 は、トラス橋の有限要素モデルを用いて材料非線形によ る動的な増幅率の定量評価に対する材料非線形性の影響 の解明を試みる.

2. 動的効果の定量化

(1) 解析対象と有限要素モデル

木曽川大橋と同規模(全長 70.63 m, 幅員 8.6 m, 高さ 8.5 m)の単純支持鋼トラス橋を解析対象とする. RC 床版は弾性体平面シェル要素とし、床版以外は梁要 素で構成されている. 塑性変形が動的効果に及ぼす影 響を検討するために、梁要素に用いている鋼材の材料非 線形を考慮したモデル(弾塑性モデル)と考慮しないモ デル(弾性モデル)で計算を行う.想定する鋼材は全て SM400とした. 初期降伏応力 235 N/mm², 硬化係数を Young 係数の 10⁻² 倍とする. 荷重は死荷重 D と活荷重 fLを与える.ただしNCHRP⁵⁾では,部材破断時は活 荷重の 0.5 倍に対して崩壊しないことが求められている ので, ここでも f = 0.5 を用いることとする. 破断想定 部材は、橋梁端部に最も近い引張り斜材とし、その斜材 に最も不利な応力が働くように p1 荷重を配置する.

東北大学大学院工学研究科	正会員	斉木	功
東北大学大学院工学研究科	正会員	岩熊	哲夫
N	\wedge	$\overline{}$	\backslash

○学正員

瀧木

耕大

東北大学大学院工学研究科

図-1 動的解析における部材破断の再現

図-2 静的解析における破断荷重の載荷方法

(2) 動的増幅率の求め方

後藤ら4)に倣って図-1に示す手順で部材の破断を再現 した動的解析を行った. あらかじめ健全時の破断想定部 材の断面力 N を求めておき, N を外力として与える. そして,破断所要時間 $T_{\rm f} = 1.0 \times 10^{-2} \, {\rm s}$ により断面力 N をゼロへ減少させることで破断を再現する.動的解析の 結果からトラス主構を構成する部材iの軸方向の全ひず みの応答値でその絶対値が最大値となる ε_{id} を得る.静 的解析では図-2に示すように, D + 0.5L の後に aN を a で漸増載荷し、動的解析と同様に、ある部材 i の軸方 向の全ひずみの絶対値が最大値となる Eis(a) を求める. $\varepsilon_{is}(a)$ の絶対値が ε_{id} の絶対値を越えた直後の部材 i の a をaiとする.ここで,破断想定部材を取り払っている 状態で $a_i = 0$ のとき1倍の逆向き軸力が作用している ことと等価なので, $\alpha_i = a_i + 1$ とし, α_i は本研究で 求める衝撃係数にあたるものとして新たに、動的増幅率 と呼ぶこととする. また, 静的解析を用いて, 健全時と a = 0のときのある部材 i の軸方向の全ひずみの絶対値 が最大値となる $\varepsilon_{is}^{(0)}$ と ε_{is} もそれぞれ求めておく.

3. 得られた動的増幅率の結果と考察

(1) 材料非線形性を考慮しない場合

弾性モデルの静的な破断による全ひずみの増分 ($\varepsilon_{is} - \varepsilon_{is}^{(0)}$) と,その全ひずみの増分に動的増幅率を乗じて動 的な全ひずみの増分を表した $\alpha_i \times (\varepsilon_{is} - \varepsilon_{is}^{(0)})$ の関係を図– **3**に示した. 図中の α は最小二乗法により求めた近似直 線の傾きである. 併せて,傾きが衝撃係数I = 1.854の 直線も一点鎖線で示している.

近似直線から大きく離れた部材もあるが、 $(\varepsilon_{is} - \varepsilon_{is}^{(0)})$ と $\alpha_i \times (\varepsilon_{is} - \varepsilon_{is}^{(0)})$ の関係が線形であると仮定すると、 最小二乗法により求められた全体系の動的増幅率 α は 1.678 となった. これは衝撃係数 1.854 と比較すると約 10% 小さいが、後藤ら⁴⁾と同様に 1.854 と近い値を得た.

(2) 材料非線形性を考慮した場合

弾塑性モデルの ($\varepsilon_{is} - \varepsilon_{is}^{(0)}$) と $\alpha_i \times (\varepsilon_{is} - \varepsilon_{is}^{(0)})$ の関係 を図-4に示した.前項と同様に,図中の α は最小二乗 法により求めた近似直線の傾きであり,一点鎖線により 衝撃係数 1.854 を示している.

図-4より、($\varepsilon_{is} - \varepsilon_{is}^{(0)}$)の絶対値が小さい部材が多いこ とがわかる.しかし、 $\alpha_i \times (\varepsilon_{is} - \varepsilon_{is}^{(0)})$ の絶対値も小さ く、これらの部材は斜材破断から受ける影響が小さいと いえる.一方で、($\varepsilon_{is} - \varepsilon_{is}^{(0)}$)の絶対値が大きい部材ほど $\alpha_i \times (\varepsilon_{is} - \varepsilon_{is}^{(0)})$ の値も大きく、斜材破断から受ける影響 が大きい部材であるといえる.橋梁端部に最も近い引張 り斜材の破断を想定する際はこれらの部材(図-2中に 青丸で示した部材など)に注意を払う必要がある.

これらの結果より求められた動的増幅率αは1.319 となった.この値はガイドライン³⁾や後藤らの研究⁴⁾に ある衝撃係数1.854と比較すると約30%小さい.これ は,橋梁全体の塑性散逸により動的効果が緩和されたこ とが原因であると考えられる.

4. まとめ

破断荷重の漸増載荷によって,トラス橋の端部に最も 近い引っ張り斜材が破断した時の動的効果の定量化を試 みた.その結果,材料非線形を考慮しない場合は,本研 究で求めた動的増幅率は従来から用いられている衝撃係 数とほぼ同じ結果となった.しかし,材料非線形を考慮 した場合は,本研究で求めた動的増幅率は従来から用い られている衝撃係数と比較すると約 30% 小さいことが わかった.

図-4 材料非線形を考慮した橋梁モデルの $\alpha_i \times (\varepsilon_{is} - \varepsilon_{is}^{(0)})(\varepsilon_{is} - \varepsilon_{is}^{(0)})$ 関係

参考文献

- 1)藤野陽三:事故・災害 米国ミネソタ州での落橋事故,
 - 土木学会誌,土木学会, Vol.92, No.10, pp.52-55, 2007.
- 山田健太郎:国道23号木曽川大橋の斜材の破断,橋梁と 基礎, Vol.41, No.9, pp.26-27, 2008.
- 3) 土木学会鋼構造委員会:鋼構造物のリダンダンシーに 関する検討小委員会リダンダンシー評価ガイドライン (案),2008.
- 4)後藤芳顯,川西直樹,本多一成:リダンダンシー解析における鋼トラス橋の引張り斜材破断時の衝撃係数,構造工学論文集,Vol.56A,pp.792-805,2009.
- National Cooperative Highway Research Program: Inspection and Management of Bridges with Fracture-Critical Details, NCHRP Synthesis 354, Transportation Research Board, 2005.