X-band/C-band合成開口レーダによる津波被災状況の量的把握

東北大学	学生会員	○堺友里
東北大学災害科学国際研究所	正 会 員	越村 俊一
University of Waterloo	非 会 員	Stephen G.EVANS

1. はじめに

2011年3月11日の東北地方太平洋沖地震(*M*_w9.0)により,津波が発生した.その被害は広範囲におよび,迅速かつ効果的な被災地支援が要求された.その際に重要だったのが,建物や道路などの社会基盤施設の被害把握である.

このような広域被害の把握には、合成開口レーダ (SAR)が有用である.SARは能動型マイクロ波センサ 搭載人工衛星のため昼夜・全天候型観測が可能であり、 被害の全体像を把握する手段として注目されてきた.

既往研究ではSAR画像による定量的な建物被災況把握 が行われてきたが(堺ら, 2013),検出目標物の物理的 特性の考慮が不十分であり,被害評価に不確実性があっ た.また,道路被害把握に関しては,被害情報取得の難 しさ等から,解析事例がほとんどない状況である.

そこで本研究では、東北地方太平洋沖地震津波の被災 地である名取市で、被災前後のX-/C-bandのSAR画像解析 を行い、建物・道路被害の物理的特性と後方散乱特性の 関連を検証し、有用な波長帯および解析手法を検討する.

2. 2時期SAR画像による建物被害程度の把握手法

(1) 使用データ

本研究では、地震前後の2時期のTerraSAR-X(X-band, 分解能約3m)とRADARSAT-2(C-band,分解能約7.6m) の画像を用い、対象地域は宮城県名取市を選んだ.撮 像時期(UTC)は、TSXは2010年10月20日と2011年3月12 日、RS2が2010年3月17日と2011年5月13日である。

建物被害情報は、一棟毎の被害程度を7区分にした建物 輪郭データ(国土交通省都市局)を、2区分に編成した(表-1).対象物の形状に強く依存するというSARの特性を考 慮し、物的被害が明瞭な区分:「流失」と、それ以外:「そ の他」とするためである.道路被害は区間毎に着目し、道 路輪郭データ(ESRIジャパン株式会社)を15m区間に分割 し、国土地理院の航空写真から目視判読により「被害あ り」「被害なし」と定義した(表-2).図-1に使用したそれ ぞれの輪郭データと被災後のTerraSAR-X画像を示す. (2)使用輪郭データの選択

図-1 名取市における建物被害(国土交通省調査結果)と道路被 害(国土地理院航空写真より作成)の分布図

表-1 名取市において使用した建物輪郭データ

	編成前		編成後	
区分名	棟数	全棟数	区分名	棟数
		に対する		
		占有率(%)		
流失	2414	48.8	流失	2414
全壊1	298	6.0		
全壊2	197	4.0		
大規模半壊	477	9.6		
半壊	496	10.0	その他	2536
一部損壞	608	12.3		
被災なし	460	9.3		

観測対象物被害を的確に評価するため,被害の後方散 乱特性をより適切に反映すると考えられる輪郭データを, 物理的特性に従い選択する.建物は,まず輪郭データを 6方位別に分解し,3mバッファ建物壁面データを作成し, その中から竣工年,壁面幅,密集度,建物高を考慮し選 択した.道路は,幅員が3m以上の道路を選択した.

(3) 後方散乱係数の差分値dと相関係数rの算出

名取市における被災前後画像から後方散乱係数の差分 値dと相関係数r, 2つの特性値を式(1),(2)により計算す る(Matsuoka et al., 2010). このとき,建物輪郭データ内 ピクセル値の平均値を各建物の代表値とする.差分値は 3×3ピクセルウィンドウ内の後方散乱係数の平均値につ いて被災後の値から被災前の値を引くことで求める.相 関係数も同じウィンドウサイズから算出する.

表-2 名取市において使用した道路輪郭データ

区分名	区間数
被害あり	175
被害なし	1657

$$r = \frac{d}{\sqrt{\left(N\sum_{i=1}^{N}Ia_{i}^{2} - \left(\sum_{i=1}^{N}Ia_{i}\right)^{2}\right) \cdot \left(N\sum_{i=1}^{N}Ib_{i}^{2} - \left(\sum_{i=1}^{N}Ia_{i}\right)^{2}\right) \cdot \left(N\sum_{i=1}^{N}Ib_{i}^{2} - \left(\sum_{i=1}^{N}Ib_{i}\right)^{2}\right)} (2)$$

ここで, dは差分値[dB], rは相関係数, Nは計算ウィン ドウ内のピクセル数を表す. Ia_i,Ib_iは被災前,後のそれぞ れの画像のi番目のピクセル値, Īa_i,Īb_iはi番目のピクセル の周囲3×3ピクセルの平均値である.

(4) 判別関数Zの導出

被害情報が格納された建物輪郭データ,道路輪郭デー タを被害モデルとして用い,そこから被害程度を判別す るための判別関数を導出する.**表-1**から選択された建物 の中から,各被災区分2000棟,**表-2**の道路区間からは175 区間をランダムに選定し,トレーニングサンプルを作成 した.これらのd,r値に判別分析(奥野ら,1981)を適用し, 区分判別のための判別関数Zをそれぞれ導出した.以下, 導出されたTSX,RS2画像から得られた建物の判別関数 $Z_{TSX}, Z_{RS2},TSX画像から得られた道路被害<math>Z_{Road}$ を示す.

$$Z_{TSX} = 0.0470d + 0.572r \tag{3}$$

$$Z_{RS2} = 0.0592d + 0.176r \tag{4}$$

$$Z_{Road} = -0.0393d + 0.634r \tag{5}$$

3. 結果と検証

(1) X-band/C-bandによるの建物被害把握結果の比較

導出された判別関数Zを用い,領域内の建物被害分類 に適用する.TSXとRS2画像のそれぞれから算出された 建物被災区分別の後方散乱係数における結果を図-1に示 す.判別関数Zの導出時点では,直線の傾きしか決まって おらず,被災区分の判別線を構築するにはZを固定する 必要がある.ここでは,最も被害判別精度の高かったZを 採用した結果,TSX画像では79.8%(Z = 0.25),RS2では 75.8%(Z = -0.30)となった.この差は,次の3つの要素に 起因すると考えられる.一つには,周波数帯がX-bandの 方が短くより詳細な地表物判別が可能であったこと,また それに伴い分解能もTSXの方がRS2の2.5倍高いこと,そ してRS2が被災前後で異なるビームモードの画像を使用 していたことが大きく影響していると考える.

(2) 道路被害把握の検討

図-2 建物被災区分別の後方散乱係数における差分値と 相関係数の散布図と判別関数[Z(左)TerraSAR-X画像 (Z_{TSX}=0.25),(右)RADARSAT-2画像(Z_{RS2}=-0.30)]

図-3 TerraSAR-X画像の道路被災区分別の後方散乱係数における[(左)差分値d-相関係数rの散布図と判別関数Z_{Road}=0.25, (右)Zの頻度分布図]

道路被害の検証は,道路復旧時期と撮像時期を考慮し TSX画像の解析のみを行った.建物被害同様,導出され た判別関数Zを用いて領域内の道路被害分類に適用する. その結果,建物同様のZ = 0.25で最も検出精度75.6%と なった.そのときの差分値と相関係数の散布図,判別関 数とそのZ値の結果,Zの頻度分布図を図-2に示す.同じ TerraSAR-Xからの建物被害把握結果に比べ,道路被害は 低い検出精度を示している.航空写真の目視判読より,路 面の交通量変化や,道路沿い家屋状況変化等,建物道路 被害以外の周囲環境変化が大きく,それが画像に反映さ れることによることがわかった.

4. 結論

東北地方太平洋沖地震の被災地である名取市において, 被災前後のX-/C-band SAR画像から建物・道路被害の量的 被害把握を検討した。判別関数Zによる被害把握を検討 した結果,X-band画像により約75~80%の精度で量的な 被害把握が可能な事がわかった。今後は検出精度の改善 を目指すとともに,他地域での適用を試みる。

参考文献

- 堺友里,越村俊一,松岡昌志 (2013):TerraSAR-X強度画像の 変化に着目した津波被災地の建物被害程度の把握,土木 学会論文集B2(海岸工学), Vol. 69, No. 2.
- Matsuoka, M. and N. Nojima (2010) : Building Damage Estimation by Integration of Seismic Intensity Information and Satellite L-band SAR Imagery, Remote Sensing 2 (9), pp.2111-2126.