低周波数域の表示によるコンクリート構造物の欠陥測定手法

東北学院大学工学部	環境建設工学科	学生会員	○斎藤	親
東北学院大学工学部	環境建設工学科	正会員	李 相	憅
東北学院大学工学部	環境建設工学科	学生会員	相澤	元基

1. はじめに

Accumulated SIBIE 法は、衝撃弾性波法を用いてコン クリートの内部の欠陥を可視化する方法のひとつであ り、2 次元の画像で欠陥の位置や大きさを表すのに適し ている手法である。しかし、欠陥の大きさが比較的小 さい場合や、材料の劣化など広く分布された損傷の場 合では、欠陥や損傷までの距離を表す周波数が卓越せ ず、その位置が正しく表示されない場合がしばしばあ る。本研究では、Accumulated SIBIE 法による可視化領 域を部材厚さに限らず、低周波数領域まで拡張するこ とで欠陥や損傷を検出するための情報量を増やし、可 視化手法の精度を高めることをその目的とする。

2. Accumulated SIBIE 法の概要

可視化の一つである SIBIE 法のイメージは、測定対 象物の1点を打撃しその付近の1点または2点で捉え た打撃面に垂直方向の反射波に対する単数の周波数領 域スペクトルを用いて作成する。そのため根本的には1 次元であり、断面の欠陥を2次元座標で表すには限界 がある。それに対し Accumulated SIBIE 法¹⁾では、欠陥 を有するコンクリート構造物に対して、多点入力によ り得られたデータは入力点ごとにイメージデータ化さ れ、最終的にはひとつのイメージデータに蓄積され画 像化される(画像の重畳)。個別イメージデータへの変 換には SIBIE 法が適用されるが、この SIBIE のイメー ジデータに平滑化と反射角の補正を行なうことで合理 性を与えた方法であり、また多点入力による測定デー タを用いるので欠陥の位置を二次元の画像で表すこと が可能になっている。

3. 内部欠陥によるスペクトルの低下

Accumulated SIBIE 法による可視化領域を低周波数 領域まで拡張するための基礎実験として、欠陥の有無 とその位置が伝播測度に与える影響を衝撃応答解析 を用いて調べた。解析で用いたモデルは断面が 5×5×5cm で長さが 50cm の棒部材で、ヤング係数は

2.0×10¹⁰kN/m である(図 1)。 解析条件は欠陥健全な要素の ヤング係数の 1/2 の値を持つ要 素)が、棒部材の両端を除き B~I までの要素に位置した場合の 8 ^{50cm} ケースである。欠陥無しの場合 のスペクトルと、要素 F が欠陥 の場合のスペクトルを比較し てみると(図 2)、欠陥無しの一 次モードのピークが 2806kHz で あったのに対し、要素 F が欠陥 の

キーワード: 衝撃弾性波法、 Accumulated SIBIE 法、曲げモード、コンクリート欠陥、可視化 連絡先(多賀城市中央 1-13-1 Tel&FAX 022-351-6532) 場合一次モードのピークは 2569kHz と大きく低下して いる。また、それぞれのスペクトルのピークをプロッ トすると(図 3)、欠陥要素の位置が中央に近いほどピ ークの低下が顕著に現れることが分かった。このピー クは欠陥の存在によって供試体の厚さ振動数が低くな ったものと考えられる。

4. 欠陥条件の異なる供試体の比較

三章で行った解析の結果を考慮し、既存のAccumulated SIBIE 法の可視化範囲を低周波数領域まで拡大するこ とによる可視化効率の向上を試みた。実験には欠陥条 件の異なる3体の供試体を用いて比較を行った。供試体の 寸法は120×15×10 (cm)、である。供試体1は、欠陥の ない健全な供試体(図4)、供試体2は3箇所の欠陥の 大きさが異なる供試体(図5)、供試体3は3箇所の欠 陥の数が異なる供試体(図6)である。3章の傾向から、 欠陥位置はすべて供試体中央を基準にした。供試対1 を基準に得られた伝播測度は3636 cm/s である。

可視化結果をみると、欠陥の無い供試体1(図7) では、供試体の厚さを表す高周波数領域と低周波数 領域の境界部分に一定にピークが現れていた。それ に対し供試体2、3の可視化結果(図8,9)では、欠 陥の無い部分では供試体1と同様に境界部分にピー クが現れたが、欠陥部の低周波数領域ではピークが 欠陥の下方向へ移動していることが確認でき、小さ な欠陥でも下方へのピークの移動が確認できた。ま た欠陥が大きくなるほど、欠陥の数が増えるほどピ ークの移動が顕著に見られた。このように低周波数領 域まで可視化を拡大した結果、欠陥の位置が低周波数 領域において正確に現れており、また欠陥が同じ深さ に位置する場合は欠陥の損傷度を推定することが可能 である。

5.結論

本研究では欠陥を有するコンクリート供試体に対し、 Accumulated SIBIE を用いて可視化を行った。その際に 欠陥によってスペクトルが低下することを考慮し、欠 陥パターンの異なる供試体に対して可視化領域を低周 波数領域まで拡張し可視化の効率の向上を試みた。

1)計測システムの測定限界以内であれば、Accumulated SIBIE 法はコンクリート内部の欠陥の検出に有効であ

図7 供試体1の可視化結果

図9 供試体3の可視化結果

る。

2)測定限界を超えても、欠陥により厚さ振動数が低下することを考慮し、低周波数域を可視化することで損傷の有無を検出できる。

3)損傷の程度と損傷部の厚さ振動数の変化との関係より、損傷度の推定が可能である。

参考文献

 <u>李相勲</u>,鎌田敏郎: ACCUMULATED SIBIE 法に よるコンクリート構造物の欠陥探査数値解析,コン クリート構造物の非破壊検査論文集, Vol.4, 日本非 破壊検査協会, pp.435-440, 2012.8.