東北大学工学部	学生員	番場 良平
東北大学大学院工学研究科		新宅 勇一
東北大学大学院環境科学研究科		村松 眞由
東北大学災害科学国際研究所	正員	森口 周二
東北大学大学院工学研究科	正員	高瀬 慎介
東北大学災害科学国際研究所	正員	寺田 賢二郎

1. 緒言

日本では,1980年頃から鋼製橋脚隅角部に疲労き裂が発 見され始め,1997年頃から首都高速道路および阪神高速道 路において,同箇所の疲労損傷が報告され始めた.このよう な初期き裂を有する箇所は,地震動に起因した荷重が作用 した場合き裂が急激に進展する可能性がある.き裂の進展 挙動・進展量を精度よく表現・予測できれば,発生き裂に 対する補修・補強の必要性を適切に評価することが可能と なり,鋼構造物の合理的な維持管理法の提案につながるた め,優れたき裂進展解析手法の開発は必要不可欠である.

しかし,従来のき裂進展解析でしばしば用いられる,結 合力モデルはき裂の発生や分岐を表現できるといった多く の利点を有しているが,シェア-リップのような延性破壊挙 動を適切に表現するに至っていない.一方,これまでに著者 らは,損傷変数を導入した結合力モデル(以降,損傷・結合 カモデル)を提案し,疲労破壊に適用した¹⁾.そこで本研究 では,損傷・結合力モデルを用いて延性破壊挙動を表現す るために,塑性ひずみを考慮して損傷変数の発展方程式を 定式化する.得られた結合力モデルを用いて,3点曲げ試 験の数値解析を行い,き裂進展挙動の表現性能を検証する.

2. 損傷変数を導入した結合力モデル

本研究では,損傷変数を熱力学的方法によって導入した結 合力モデルを用いる.結合ポテンシャル には,de-Anres ら²⁾によって三次元に拡張された Rice ら³⁾の原子間結合 に基づく結合力モデルに,損傷変数を導入した次式を採用 する.

$$\Psi = (1 - D) G_{\rm c} \left[1 - \left(1 + \frac{\delta}{\delta_{\rm c}} \right) \exp\left(-\frac{\delta}{\delta_{\rm c}} \right) \right] \tag{1}$$

ここで,Dは損傷変数, G_c は臨界エネルギー解放率, δ は 有効き裂開口量を表し, δ_c はき裂面の分離が開始される δ の臨界値である.有効き裂開口量は,破壊モードの比を表 すパラメータ によって次式で定義される.

$$\delta = \sqrt{\delta_n^2 + \beta \delta_t^2} \tag{2}$$

ここで, δ_n および δ_t はそれぞれき裂面に垂直な方向と平行 な方向のき裂開口量であり,以降これらの添え字は同様の 方向を表す.各方向の結合力は,結合ポテンシャルをそれ ぞれの方向のき裂開口量で微分することで得られ,次式の ようになる.

$$\sigma_{\rm n} = \frac{\partial \Psi}{\partial \delta_{\rm n}} = (1 - D) \frac{G_{\rm c}}{\delta_{\rm c}} \left(\frac{\delta_{\rm n}}{\delta_{\rm c}}\right) \exp\left(-\frac{\delta}{\delta_{\rm c}}\right) \tag{3}$$

$$\tau_{\rm t} = \frac{\partial \Psi}{\partial \delta_{\rm t}} = (1 - D)\beta \frac{G_{\rm c}}{\delta_{\rm c}} \left(\frac{\delta_{\rm t}}{\delta_{\rm c}}\right) \exp\left(-\frac{\delta}{\delta_{\rm c}}\right) \tag{4}$$

ここで, δ_{c} は結合力 σ が最大となる時の有効き裂開口量で ある.また,Dと同伴な熱力学的力Yは結合ポテンシャル を損傷変数で微分した次式から得られる.

$$Y = -\frac{\partial \Psi}{\partial D} = G_{\rm c} \left[1 - \left(1 + \frac{\delta}{\delta_{\rm c}} \right) \exp\left(-\frac{\delta}{\delta_{\rm c}} \right) \right]$$
(5)

ただし, Y は損傷が進行することによる散逸エネルギーを 意味する.また,損傷の発展方程式には Lemaitre らによっ て提案された次式⁴⁾ で表されるものとする.

$$\dot{D} = \left(\frac{Y}{S}\right)^n \dot{p} H(p - p_D) \tag{6}$$

ここで,pは相当塑性ひずみ速度,Sおよびnはそれぞれ 材料定数である.また,Hは Heaviside 関数でありpおよ び p_D はそれぞれ累積塑性ひずみと,そのしきい値である. 式(6)が示すように,材料内部の損傷を表す変数Dは塑性 変形によって生じ,ýとYに伴って進行する.

図-1 試験片寸法

図-2 引張試験数値解析モデル

図-1 に示す溶接構造用圧延鋼材 SM490YB の試験片を用 いた引張試験⁵⁾ について,図-2の解析モデルを設定して, 材料および結合力モデルのパラメータ同定を行った.解析 モデルは,*x-y*,*y-z*平面上に対称条件を考慮した 1/4 モデル とし,下面を引張方向に固定して上面に 2.9×10⁻²mm の強 制変位を与えた.また,中央2列の要素と要素の間に二重 節点を設け,前節で示した結合力モデルを導入した. 従来の結合力モデルおよび本研究における損傷・結合力 モデルについて,それぞれ同定したパラメータを用いた引 張解析により得られた応力-ひずみ曲線と,引張試験の応力-ひずみ曲線を図-3に示す.

次に,同じパラメータを用いて,図-4に示す解析モデル を用いた3点曲げ試験の数値解析を行った.上面の中点に 3mmの強制変位を与え,水平方向固定とした.また,両側 面の下端の点を垂直方向に固定し,x-y平面上に対称条件を 考慮し,片面を板厚方向に全拘束し,1/2モデルとした.

図-5 中に示した赤いエッジ部分に,疲労によるき裂を想定 した初期き裂を 1mm 設定した.また,同図中に示す紫色の 要素間,すなわち初期き裂先端より,x軸方向からそれぞれ 45°,90°,135°の方向に二重節点を設け,結合力モデルを 導入した.以降,x軸方向から 90°の方向を「方向1」,x 軸方向から 45° および 135°の方向を「方向2」とする.

従来の結合力モデルと損傷・結合力モデルの数値解析結 果を比較する.図-6a およびbは,それぞれ従来の結合力 モデルおよび本研究での損傷・結合力モデルを用いた解析 において,き裂がある程度進展したときの変形と相当塑性 ひずみ分布である.従来の結合力モデルでは,図-6aに示 すように,方向1へき裂が進展した.これは,曲げにより 生じる引張応力に対して,方向2の面より方向1の面に大 きな引張応力が作用するためである.一方,損傷・結合力 モデルでは図-6bに示すように,方向2へき裂が進展した. き裂先端では図-7aに示すように,偏差応力の大きな方向2 が指す領域での相当塑性ひずみが大きくなる.このことに より,本研究で用いた損傷・結合力モデルでは,図-7bのよ

うに損傷値が方向2の領域でより大きな値を取る.損傷値 が発展したことにより,最大結合力の低下した方向2へき 裂が進展し,シェア-リップに近い挙動が再現できているこ とがわかる.また,従来の結合力モデルによる数値解析結 果と比較して,損傷・結合力モデルでは,き裂進展開始時の 強制変位と相当塑性ひずみの値が大きい.これは損傷・結 合力モデルでは,損傷値が発展するためにある程度の大き さのひずみを必要とし,非常に大きな最大結合力を発揮す るためである.

4. 結言

本研究では,損傷変数に塑性ひずみを考慮した結合力モ デルを用いて,数値解析による引張試験の応力-ひずみ線図 に対する再現を行った.そして,初期き裂を有する試験片を 想定した3点曲げの数値解析を行い,従来の結合力モデル のき裂進展挙動との比較を行った.その結果,従来の結合 カモデルでは表現できない,延性破壊におけるシェア-リッ プに近い挙動を再現することができた.

参考文献

- 新宅勇一,村松眞由,堤成一郎,寺田賢二郎,京谷孝史,加藤 準治,森口周二:損傷変数を導入した結合力モデルによる多結 晶金属の疲労き裂進展解析,計算工学会論文集,No.2014014, 2014.
- de-Andres, A., Perez, J.L. and Ortiz, M : Elastoplastic finite element analysis of three-dimensional fatigue crack growth in aluminum shaft subjected to axial loading, *Int. J. Sol. Struct.*, Vol. 36, pp. 2231–2258, 1999.
- 3) Rice, J. and Wang, J., Embrittlement of interfaces by solute segregation, *Mater. Sci. Eng.*, A102, pp. 23–40,1989.
- 4) Lemaitre, J., A continuous damage mechanics model for ductile fracture, *J. Eng. Mater. Technol.*, Vol. 99, pp. 2–15,1977.
- 5) 大畑充,南二三吉, 不均質組織形態と延性破壊限界の相互シ ミュレーション,溶接構造シンポジウム 2011 公演論文集, pp. 203-216, 2011.