東日本旅客鉄道㈱	東北工事事務所	正会員	阿部	久乃
東日本旅客鉄道㈱	東北工事事務所	フェロー会員	岩田	道敏
東日本旅客鉄道㈱	東北工事事務所	正会員	田附	伸一

1.はじめに

近年,鉄筋コンクリートラーメン高架橋において, 地盤条件の良い箇所では地中梁を設けない一柱一杭形 式のパイルベント構造が採用されることが多い.しか し,一柱一杭形式における課題の一つとして,杭と柱 の接合部は,それぞれの軸方向鉄筋の定着部となるた め,接合部が構造上の弱点にならないようにする必要 がある.そこで,杭と柱の接合部には,鋼管で補強す る接合方法を採用する場合が多い.しかしながら,鋼 管による接合は高額となるという課題もある.そこで, 杭と柱との接合部の鋼管を用いない合理的な接合構造 を提案することを目的に実験を行っている(図-1).

本稿は,杭と柱の軸方向鉄筋を定着させた接合部を 有する試験体の正負交番載荷実験結果について報告す る.

図-1 杭と柱の接合部方法

2. 開発概要

試験体の形状を図-2に示す.

柱部および接合部の耐力を比較し,接合部が弱点とならないよう,柱基部と接合部基部の荷重の比をパラメータとする.今回示す荷重 Pとは,曲げ耐力 Muをせん断スパン a で割り戻した値を表す(式(1)).

(1)

$$P = Mu / a$$

ここに , P : 荷重 Mu : 曲げ耐力 a : せん断スパン 柱部は実構造物の 1/2 スケールとし,柱と接合部の荷 重の比が 1:1 となるように接合部を決定した.コンクリ ート強度は,実構造物を参考に 27N/mm² とした.また, 柱部断面における鉄筋比は実構造物と同等程度とする. 柱の定着長は,基本定着長の算定式¹⁾を参考に 30 と し,杭の定着長も同様に 30 とした.なお,試験体諸 元の詳細を表-1 に示す.

計測項目は,載荷荷重,図-3 に示す位置に配置した ワイヤーストレインゲージによる軸方向鉄筋のひずみ, 変位計による柱基部から 1D 位置および接合基部から 1D 位置の水平変位である.

		荷重 載荷スパン	曲년하는 將고국?	新田井注	接合部	定看長	長口連姓館	軸方向鉄筋比		带研究	せん断耐力比	
			単応1可入パン	面1710373	ENTER J VA	長	30	URXENTIC	中央	基部	TH SKAD	(基部断面)
L		P(kN)	a(mm)	Mu(kNm)	(mm)	(mm)	(mm)					Vy/Vmu
	接合部	471.9	1750	825.9	670 × 670	710	660	D22×6	0.0345	0.0172	D13@85	2.47
	柱部	463.5	1040	482.0	450 × 450	-	-	D22×6	0.0382		D13@85	1.69

3. 試験結果

3.1 損傷状況

載荷時の破壊状況写真を写真-1 に示す.

1 時の引き側,押し側各々で接合部上端から基部を 結ぶ方向の斜めひび割れ,柱基部より1.5Dの位置から 柱基部に向う斜めひび割れが発生し,接合部の引張縁 では中心位置に横方向にひび割れが発生した.その後, 荷重の増加が緩やかになり,接合部に定着する柱の軸 方向鉄筋下端部が降伏した.2 以降は新たなひび割れ の発生は殆ど見られず,接合部の引張縁に発生した横 方向のひび割れが卓越し,荷重低下が進行したため4

で載荷を終了した(写真-2).載荷終了後の損傷状況 を確認したところ,杭の軸方向鉄筋の付着が切れてい た(写真-3).

キーワード 杭柱,接合方法,荷重差

連絡先 〒980-8580 宮城県仙台市青葉区五橋一丁目1番1号 東日本旅客鉄道株式会社 TEL 022-266-3713

写真-1 載荷時の破壊状況

写真-2 接合部引張縁

写真-3 付着切れ

3.2 軸方向鉄筋のひずみ

1 引時の軸方向鉄筋のひずみを図-5 に示す.なお, 今回着目した位置は,1 引時のうち杭および柱でひず みが最大となった位置,接合部中央位置である.

杭軸方向鉄筋は接合基部から 75mm の位置で降伏ひ ずみに達し,柱軸方向鉄筋は柱基部で最大のひずみと なった.また,接合部中央では杭軸方向鉄筋のひずみ が小さいことに対し,柱軸方向鉄筋のひずみが大きい.

3.3 荷重-変位曲線

交番載荷試験の荷重-変位曲線を図-4 に示す.なお, 図中の荷重は軸力によるモーメントを荷重換算し,補 正した後の値としている.

今回,軸方向鉄筋の降伏変位である1 に達する前に

荷重の増加が緩やかになり変位量が増大すると伴に最 大荷重となり,2 以降は荷重が急激に低下している.

以上の試験結果より,接合部に損傷が卓越し,ひび 割れの進行により軸方向鉄筋の付着が切れたことで荷 重低下が進行したものと考えられる.

図-4 荷重-載荷点変位曲線

4.考察

本試験体は, 接合部基部の曲げ耐力 Mu が 825.9kNm であるのに対し, 最大荷重とせん断スパン長を乗じた 接合部基部での曲げモーメントが 682.3kNm であり,接 合部基部では耐力に対して 0.82 程度しか負担していな かった. 同様に柱基部でも 0.84 程度しか負担していな いため,鉄筋の付着が切れなければ荷重を保持するこ とができたものと考える.

したがって,今後の試験において,接合部基部の耐 力を大きくし,柱部に対する接合部の荷重の比が1:1以 上となる2体の試験体により追加試験を実施し,破壊性 状の確認を行うと伴に,荷重の比,定着長,せん断ス パン,ひび割れ制御を目的にした帯鉄筋ピッチ等をパ ラメータとしたコンクリート構造物の2次元非線形解 析を実施する.

5.おわりに

今回実施した試験により,柱基部と接合基部におけ る荷重の比が1:1の場合は,接合部におけるひび割れが 卓越し,軸方向鉄筋が抜出すことで付着が切れ荷重低 下が進行するという知見が得られた.

本研究において,施工方法を確立できるよう引続き 試験および解析を実施していく.

参考文献

 1)鉄道構造物等設計標準・同解説コンクリート構造物, 鉄道総合技術研究所,平成16年4月