遠心載荷模型実験による逆断層強制大変位を受ける表層地盤 の変形と地盤材料特性の関係の検討

八戸工業大学

1. はじめに

直下型地震時の基盤断層の大変位により地表面付近の構 造物が致命的な被害を受ける可能性がある。特に逆断層に おいては、地表面が大きく隆起することにより大きな被害 が発生する。最近では、活断層の研究が進められ、断層の 位置や形態・活動する確率など多くの情報が得られるよう になってきた. それにより, 既設の重要構造物の直下に活断 層が存在することが問題視され、対応や対策が必要となっ ている.これらの対応や対策を考える上では,地表面の変 位や地表面への到達位置、地盤内部のせん断帯の進展につ いての知見が必要である。著者らのグループでは、逆断層 発生時の地表面のずれや表層地盤や高盛土中のせん断帯を 予測するために遠心載荷装置を用いた実験的研究を行って きた1)が、多くの要因があるため未だ精度よく予測できて いない。本研究では、逆断層による強制的な大変位を受け る水平地盤の変形について遠心載荷装置を用いて実験的に 検討する.特に、盛土などの地盤構造物や表層地盤中の変 形を予測するための基礎的な検討として、地盤材料の力学 特性や層厚が変形性状に与える影響について検討を行う.

実験概要

本研究では、1G場での模型実験では拘束圧の条件が再 現できないため、遠心載荷装置を用いて水平地盤に対して 逆断層が発生した場合を想定した遠心載荷模型実験を行っ た. 実験装置の模式図を図-1 に示す. 幅 187mm のうち右 側から約 50mm 付近から 45° と 75° の角度で強制変位(最 大15mm)を与えることで基盤の逆断層を再現する。断層 角 75°の場合には層厚 90mm, 断層角 45°の場合には層厚 75mmの水平地盤を作成し、100Gの遠心加速度を付与する ことで実験を行った。土層の前面は透明なアクリル板で作 成し、断層角 75°の場合は地盤中に 188 個のマーカー・断 層角 45°の場合は 242 個のマーカーを設置した。実験中は 土層を動画撮影し、動画を連番画像に変換して PTV 画像 解析によりマーカーの変位を計測した。実験で使用した地 盤材料はケイ砂5号とガラスビーズであり、その性質を表 -1 に示す. 地盤は各層の密度が一定となるように締固めて 作成した。ガラスビーズはケイ砂に比べて内部摩擦角が小 さいため、縦ずれ逆断層による地盤中のせん断帯形成に対

八戸工業大	学 正会員	橋詰	豊・金子	賢治
電源開発(株) 正会員	江原	昌彦	
	1 73 149			
			J	

○山本 温・野添

重晃

学生会員

表-1 実験に用いた地盤材料の基本的性質

地盤材料	ケイ砂5号	ガラスビーズ
$\rho_s \; (g/cm^3)$	2.680	2.489
D ₅₀	0.46	0.44
U_c	1.31	1.30
U_c'	1.31	0.947
ρ_{dmin} (g/cm ³)	1.304	1.450
$ ho_{dmax}~({ m g/cm^3})$	1.601	1.579
$c_d (kN/m^2)$	5	0
$\phi_d(\circ)$	38.9	31.9

する内部摩擦角の影響を検討するために使用した。断層角 75°のケースに関しては、拘束圧のせん断帯進展に与える 影響や層厚が地表面変位に与える影響を調べるために、層 厚を 50mm, 70mm と変化させた実験も行った。

3. 実験結果

(1) 地表面の変位

図-2 に基盤逆断層発生後の地表面のマーカーの位置座標 を示す. 断層の角度が45°の場合には,地表面の最大鉛直変 位量は, 硅砂とガラスビーズでほとんど変わらず約10mm (実変位1m)であった. 一方,地表面の鉛直変位が現れる位 置については, 硅砂の方が基盤断層から離れる方向に現れ ており,約30mm(3m)の違いが見られる. このような差 が現れる要因としては,地盤材料特性の違いによるものと考 えられる. 本研究で用いたガラスビーズと硅砂においては, 土粒子の密度と内部摩擦角が大きく異なっている. どのよう な地盤材料特性に起因するかについては,実験あるいは数 値実験等により検討を継続する必要がある. 断層の角度が 75°の場合には,45°の場合と異なり,最大鉛直変位量に差 が現れおり,地表面到達位置についてはほとんど変わらな い. 断層角度の違いによって地表面の変状が異なることや

地盤材料特性の影響度が異なることがわかる. 硅砂を用いた 75°の場合には,表層地盤の層厚が異なるケースの実験 も実施しており,図-2(b)中にはこれらの地表面変位分布 も示している. 層厚 50mmのケースでは,断層によって地 表面が受ける影響が大きく,最大鉛直変位量は 17mm(実変 位 1.7m)と他のケースよりも大きいことがわかる. それに 対して層厚が高いケースでは,鉛直変位量は約 14mm(実 変位 1.4m)程度である. 地表面の鉛直変位については,表 層地盤の層厚が小さくなるほど大きく現れることがわかる.

(2) 地盤中のせん断面の進展

基盤逆断層による表層地盤中のせん断面を抽出するため に、各深さのせん断面の位置を以下のようにして算出した.

- 実験中に撮影した画像から画像解析により断層発生前後の全マーカーの位置座標 (xⁱ, yⁱ)を求め、変位ベクトル uⁱを算出する.(iはマーカー番号を表している.)
- 水平方向の隣り合うマーカーjとの相対変位ベクトル $u^{ij} = u^i u^j$ を算出し、大きさ $||u^{ij}||$ を算出する.
- 各深さ毎に相対変位ベクトルの大きさが 5mm(基盤 断層の鉛直変位 15mm の 1/3)以上である 2つのマー カーを抽出する。
- 各深さ毎に抽出した2つのマーカーの初期座標の平均
 座標を算出し、その深さのせん断面の位置とする。

このようにして算出したせん断面の位置を図-3に示す。同 図には,基盤断層境界から断層角の延長線も示している。断

層角によらず、せん断面の進展方向は硅砂の方が断層角延 長線からずれることがわかる.ガラスビーズの場合には、基 盤断層のほぼ延長線上にせん断面が進展している. 硅砂の 場合には、層厚を変化させてもほぼ同じ位置にせん断面が 現れている.ただし、表層付近においては、せん断面の進 展方向が、断層延長線からずれている.せん断面の進展方 向は地盤材料特性に依存すること、拘束圧に依存すること が推測される.地盤材料特性のうち、ダイレイタンシー特 性あるいはその拘束圧依存性などがせん断面進展方向の重 要な要因となると思われる.

4. おわりに

本研究では、逆断層により大変位を受ける表層地盤の変 形を予測するための基礎的な検討として地盤材料特性や拘 束圧の影響について遠心載荷模型実験を行い検討した.地 盤材料によるせん断面の進展方向の違いや地表面への到達 位置、最大鉛直変位量などを調べ、いくつかの知見が得ら れた.しかし、実験で行った地盤材料の種類が少ないため、 より多くの材料を用いて実験することにより多くのデータ を蓄積し検討していく必要がある.また、変形の予測手法 の確立に向けて、実験および数値実験を行ってせん断面進 展やそれに与える要因・その影響度を検討する予定である.

参考文献

 大森ほか:縦ずれ逆断層による高盛土の変形挙動に関する遠 心載荷模型実験,平成24年度土木学会東北技術研究発表会, Vol. 26. 2013