日本大学工学部	学生員〇齋藤	₪ 聪明
日本大学工学部	正会員 手塚	乙裕 化
日本大学工学部	正会員 長材	\$ 久夫

1 はじめに

砂浜海岸に河口を有する河川は閉塞しやすく、人工開削 による効果は数日程しか続かないことも報告されている。開 削水路の閉塞条件は河川流と潮汐流による流砂量収支によ って決まるが、河口の砂州高や位置に関する検討は少なく、 本研究では効果的な開削条件を見出すために、これらに関 する実験的検討を行った。

2 実験概要

装置概略図を図-1 に示す。長さ20m、幅0.8mの二次元造 波水路の終端から6m地点に堆積長2.5m、堆積高0.3m、前 浜勾配1/10、平均粒径97.24µmの砂浜海岸を設けた。また、 水中ポンプを用いて河川流量と潮位差を任意に設定するこ¹ とが可能で、図-2 に示す高さ0.025m、幅0.05mの開削水路 を有する河口モデルで実験を行った。

2.1 開削水路拡張実験

河川流による開削水路の拡張に関する実験を行った。通水時間を10分とし、表-1のパラメータで実験を行い、レーザー変位計を用いて拡張後の水路形状を計測した。

2.2 開削水路の開口・閉塞実験

開削水路の開口と閉塞に及ぼす河川・海象条件に関する 実験を行った。表-1のパラメータで 30 分間実験を行い、砂 州の縦断形状から最大堆積高と頂点位置を求めた。

連絡先:〒963-8642 郡山市田村町徳定字中河原1

3 実験結果および考察

3.1 開削水路拡張実験

図-4、図-5は開削水路の拡張後の形状を示したもので、 縦軸は初期深さ Hs、横軸は初期幅 Ws で無次元化している。 図-4 は潮位差ηによる変化を表したもので、ηの増加に対し 水路深さが増加している。図-5 は流量Qを変えたもので、流 量が増加することで水路幅は増加するが水路深さが埋め戻 しにより減少することが示された。

次に、これらの実験値を基に、Ogawa.et al¹⁾や田中²によっ て提案されている河口閉塞開口の数値モデルを用いた検討 を行う。

$$(1-\lambda)Lh\frac{dB}{dt} = e_r q_r B - e_w (1-\lambda)Q_w$$
(1)

ここで、B:水路幅、h:水路水深、λ:砂の空隙率、t:時間、q:流 砂量、er:流れによる土砂排出の効率、ew:波浪による沿岸漂 砂の押し込みの効率、Qw:沿岸漂砂量である。また、流砂量 は Einstein の式を用いた。

$$q_r = q_r * \sqrt{(\gamma s - 1)gd^3} \tag{2}$$

ここで、q_r*:掃流砂量、γs:砂の比重、g:重力加速度、d:粒径で ある。q_r*は土研式(佐藤・吉川・芦田)を適用し評価している。 また、拡張実験では漂砂量 Qw を0となり、e_rは式(1)から次式 が得られる。

$$e_r = \frac{(1-\lambda)Lh}{q_r t} \log \left| \frac{B}{B_0} \right|$$
(3)

図-6、図-7 に無次元水路幅と深さに及ぼす qrの関係を示 す。これらは、水路幅に対しては流量増加の影響が大きく、 水路深さは流量が大きいものほど埋め戻し効果が大きく、qr の増加に伴って水路深さが増加することを示している。

日本大学工学部土木工学科 Tel&Fax(024-956-8724)

図-8 に式(3)から求めた erと qrの関係を示す。qrが大きくなることで開削水路一杯の安定した水流となり erは一定値に近づく。また、qrが小さい場合は水路内に水が側壁に沿って流れるため侵食量は大きくなり、erは大きくなる。

3.2 開削水路の開口・閉塞実験

図-9 は河口砂州堆積形状の縦断形状の一例を示したもの で、波高が増加する堆積高は増加し頂点位置が陸側に形成 されている。また、波高が 0.04m より大きくなると堆積高が限 界に達し始め、沖側部分で堆積が始まっている。これはCパ ラメータの中間型から侵食型の傾向であり、Sunamura・

次に、図-3の開削水路の砂州高が漂砂量 Qwと掃流砂量 qrの比で示されると式(4)のように仮定する。

$$\frac{h_{s+\eta}}{h_b} = K \left(\frac{Q_w}{q_r}\right)^n \tag{4}$$

ここで K:係数、n:指数である。本実験は波向が海岸に対し垂 直なので漂砂量 Qwは次式を用いた。

$$Q_w = \alpha (EC_g)_b \tag{5}$$

ここで、α:定数、(ECg)b:砕波点における単位幅辺りの波浪エネルギーフラックスである。また qrについては式(2)で評価し

ている。次に、図-10 に砂州堆積高(hs+η)/hbと無次元漂砂 量 Qw/qr の関係を示す。これより、平均海面からの堆積高さ は波の遡上高さに関係しており、砕波水深に対して一様の 関係となる。しかし、Qw/qrが小さい場合は周期によって違い がみられ、これを改善できる新たなモデルが必要である。

図-11 に砂州堆積位置に及ぼす漂砂量 Qwの関係を示す。 これは、漂砂量が増加することで頂点位置が陸側に形成されることを示している。また、周期が増加することで頂点位置 は陸側に形成され、潮位差が減少することでも同じ傾向にあ ると解る。しかし、横軸は流砂量を考慮していないパラメータ のため、今後はこれを考慮した数式モデルが必要である。

4 まとめ

(1)潮位差は水路深さを、流量は水路幅をそれぞれ決定する。 (2)掃流砂による土砂排出効率は、水路幅を満たす流量で安定した値をとる。(3)平均海面からの堆積高さは波の 遡上高さに関係しており、8割ほどで砕波水深に対して一様の関係となる。 (4)砂州頂点位置は潮位差が小さく、あるいは、高波高、または周期が長い場合において陸側に形成されやすくなる。

参考文献

- Y.Ogawa, Y.Fujita and N.Shuto : Coastal Engineering in Japan 27(1984), pp.233-247
- 2)田中仁:河口域の流れと地形,日本流体力学会(2005) ,pp40-42