数値計算によるメコン河氾濫原の栄養塩の時空間変化

東北大学大学院 正会員 〇風間 聡 カリフォルニア大学デービス校 G Sahoo & SG Schladow 東北大学大学院 学生会員 天野文子

1. はじめに

大陸河川の氾濫原は,季節的に水や栄養塩をうけ, 洪水規模によって環境が決められると考えられている

(Baylay, 2005). Wolfgang ら (1985)の洪水インパルス 仮説によれば氾濫の水深や期間が,ATTZ (aquatic/ terrestrial transition zone)の景観を決めるとしており,空 間的に氾濫水から受ける栄養塩や水の授受が異なり, 氾濫原の土壌や生態相が多様であることを示唆してい る.そこで,本研究では,メコン河流域の氾濫原を対 象に,氾濫水質モデルを構築し,栄養塩の空間的分布 を定量的に把握し,急速に進む開発に対して適切な氾 濫原管理の提言を最終的に目指す.

2. 対象地域およびデータセット

対象領域はカンボジアのバサック川右岸氾濫原であ る.バサック川は、メコン河の支流であり、プノンペ ンで分流し、メコン河西部を流下する河川であり、メ コン河と同様の氾濫規模を持つ.右岸側に広い氾濫原 をもち、20km以上の氾濫距離の場所もある.バサック 川の河道から右岸 18km 地点のタケオ市郊外において 採水を行い、水質分析を雨季と乾季にわたり年2回ほ ど3年間実施した.分析はハック社の迅速水質分析計 DR890を用いて現地において行なわれた.得られた水 質データを雨季と乾季において平均したものをそれぞ れの季節の水質データとして利用した.

3. 栄養塩モデル

水質モデルは, Sahoo ら(2010)が開発した準2次元の LCM (Lake Clarity model)の一部である(図1).また, このモデルでは土壌の栄養塩の変化と授受が表現され ていないため,指数関数で表現されたモデルを組み込 んだ.土壌からの溶出フラックス *SR*(mg/m³/day)は次の 式で表せる.

 $SR = D_c (N_{soil} - NH4)$ 水柱内と土壌内の濃度差の勾配によってフラックスが 求められ、 D_c はバルク係数、 N_{soil} は土壌中の窒素濃度、 NH4 は水柱のアンモニア濃度である.ここで D_c は 0.8/day を与えた.土壌の栄養塩収支は、土壌の栄養塩 量、沈降量と溶出量による.初期条件である氾濫前の 土壌の栄養塩量が不明である.ここでは、現地観測に よって得られた乾季の栄養塩量の可吸態の平均値を与 えた.窒素が1000mgN/m³、リンが100mgP/m³である.

LSM は、窒素、リン、植物プランクトン、動物プラ ンクトンの項目を含んでおり、水理モデルと連動する. 計算の変数は、アンモニア、硝酸体窒素、溶存有機窒 素、懸濁体窒素、リン酸体リン、溶存有機リン、懸濁 体リンと、クロロフィル、植物プランクトン、動物プ ランクトンの栄養塩濃度である.各変質のパラメータ として既往のものを利用した.バサック川氾濫原の水 位は、1日10cm程度上昇するが、大変小さいので流れ による巻き上げは考慮しない.沈降と拡散(0.125m²/s)

キーワード:肥沃化,窒素,リン,洪水,熱帯モンスーン

連絡先:宮城県仙台市青葉区荒巻字青葉 6-6-06 東北大学大学院工学研究科土木工学専攻 TEL 022-795-7455

のみを考える. 氾濫原はメコン河から分流したバサッ ク川右岸の氾濫原を想定し, 氾濫幅が 18km, 地表面が 氾濫原端の 10m までの線形に増加するとした. 氾濫時 の水位差も 10m 差とした. 水位上昇は 10cm/day で 100 日間上昇, 下降する. 境界条件であるバッサク川の栄 養塩濃度はメコン河委員会観測データの過去 10 年の平 均値を与えた. 降雨からの栄養塩負荷は無視した.

図2 水位上昇時の硝酸態窒素横断分布

Distance from the Bassac River (km) ★ Mean observed value

図3 洪水ピーク時各栄養塩濃度の横断分布

星印は観測平均値 縦線は観測値幅

After Flood retreat Dry season Concentration (mg/m3)

Distance from the Bassac River (km)

図4 洪水後退後の土壌栄養塩濃度横断分布

4. 結果

洪水は氾濫開始後 100 日で最高水位に達する. 図 2 に 75 日目の硝酸態窒素濃度の横断分布を示す. 氾濫前 線がバサック川河岸から 13.5km 地点に達しており,先 端領域が土壌からの栄養塩の溶出を受けてその部分の 硝酸態窒素濃度の上昇がわかる. このときの河岸部分 は土壌の栄養分が枯渇し氾濫水に供給されず,濃度の 低い河川からの水が流入している.

図3は洪水ピーク時の氾濫水中の各栄養塩濃度の水 平分布を示している. PO4 (SRP)と POP の観測値を示す が,河岸からの上昇と低下がモデルによって表現され ている.観測値は大きなばらつきがあり,図中に示し たその範囲に計算値は含まれている.モデルによると, NH4やNO3濃度は氾濫前線域において大きな値を示す が,他の濃度は大きな空間変化を示さない.幾つかの 栄養塩濃度,POP やクロロフィル P は前線にむけて減 少している.これらは各要素への変化量に依存してい る.

図4に氾濫後退後の土壌の栄養塩の空間分布を示す. 全窒素は氾濫エッジ部分に多くの堆積がみられる.河 岸にむかって減少するが,河岸付近でふたたび上昇に 転ずる.全リンについてはおおよそ一定の堆積量がみ られるが,河岸付近で若干の上昇がみられる.カンボ ジア氾濫原で作付される米に占める栄養塩は,窒素, リンがそれぞれ 3200Nmg/m²,600Pmg/m²である.本モ デルによる氾濫原の土壌のおおよその栄養塩量は,土 壌厚さを 10cm とすると,それぞれ 600Nmg/m², 10Pmg/m²であり,米の 1/100, 1/10 となり氾濫水のみか らでは十分な生産量を供給できないことがわかる.

図1において ChlaN, ChlaP:それぞれクロロフィル窒素, リン, DON, DOP:それぞれ溶解性有機窒素, リン, PON, POP:それぞれ懸濁態有機 窒素, リン, NH4:アンモニア態窒素, NO3:硝酸態窒素, SRP:溶存偽 応性リン(PON₄⁵), 以上 mg/m³. RF は降雨による負荷, S は沈降によ る堆積, SR は土壌からの溶出, 他の文字は各過程濃度変化量, 以上 mg/m³/day.

謝辞:本研究は鹿島学術振興財団ならびに科学研究費 補助金(22404008)の助成を受けたものである.

参考文献

 PB. Bayley, Understanding large river: Floodplain Ecosystem, BioScience, 45(3), 154-158, 2005.
JJ. Wolfgang, et al., The flood pulse concept in rive r -floodplain systems, Proc. Int. large river symp., 110-127, 1989.

3) GB. Sahoo, et al., Effect of sediment and nutrient loading on Lake Tahoe optical conditions and restoration opportunities using a newly developed lake clarity model, Water Resour. Resear., 46, W10505, 2010.