有限要素シミュレーション検証手段 としての 3D プリンターの可能性

秋田大学院	学生員	江村	拓郎
秋田大学院	学生員	滝田	拓史
秋田大学院	正員	後藤	文彦

1. はじめに

近年、吉村パターンやミウラ折りに代表される折 り紙構造や、蜂の巣からヒントを得ているハニカム パネルなどが、宇宙構造物や医療機器をはじめ、多 くの分野で利用されている。こうした構造は製作し て実験することが困難なので、その力学的挙動を 予測・評価するためには有限要素法等の数値シミュ レーションを用いざるを得ない。しかし一方で、有 限要素法は、要素選択やメッシュ分割、境界条件、 ソルバーの種類などに極めて敏感で、それらの条 件が適切に設定されていないと、いわゆる「大はず れ」の解を出してしまうこともある。そのため有限 要素法によって得られる数値解と実験によって得ら れる実測値を比較することは、こうしたシミュレー ションの妥当性を検討する上で非常に根本的な検証 手段である。従来は、こうした複雑な構造の試験体 を製作することは困難であったが、昨今、3Dプリ ンターの普及が進み、解析用の有限要素モデルを作 成すれば、それをそのまま樹脂材料で成形すること ができるようになった。本研究では、こうした 3D プリンターによる成形モデルを用いた実験で、有限 要素シミュレーションの妥当性の検証を行う可能性 について論じる。

2. 材料試験

(1) 引張試験

まず本研究で使用する 3D プリンターの樹脂材料 のヤング率を求めるため、引張試験を行う。材料は Stratasys 社¹⁾の Objet FullCure720 を使用する。

引張試験の試験体寸法と、同試験体に 1kgf の重 りを載荷・放置し、27 時間のひずみと時間の関係を 図-1 に示す。試験体の両端には、それ自身を吊り下 げるため、及び重りを載荷するための孔があいてい

る。図のように、載荷後、一向に試験体の変形が落

ち着かず、クリープひずみが進行しており、この材 料を弾性体として扱うことが難しいと考えられる。 (2) 圧縮試験

図-2 圧縮試験結果

図-3 圧縮試験装置

次に圧縮試験で用いた試験体の寸法と試験結果 を図-2 に示す。試験は図-3 の載荷装置を用いて 20kgf の重りを載荷し、30 分間 5 分毎の変位を測定 した。その後除荷し、同じく変位を測定した。圧縮 試験では載荷後のクリープひずみはほとんどなく、 且つ重りの除荷後はほぼ弾性回復していることがわ かる。このように 3D プリンター樹脂材料は、引張 に対して極めて大きなクリープを発生する特殊な材 料であり、FEM シミュレーションの検証目的に応 える材料とは言い難いが、今回は参考までに、特徴 的ないくつかの解析例に対して 3D プリンター成形 モデルで実験を行った例を示す。 3. 3D プリンター成形モデルの実験

(1) ダイヤカット円筒

有限要素解析では、周方向と高さ方向のパターン 数の組み合わせで剛性が特徴的に変わるダイヤカッ ト円筒について、3D プリンター成形モデルを作成 して実験してみた。3D プリンターで成形したダイ ヤカット円筒について図-3 の装置を用いて 20kgf を載荷して行った圧縮試験の結果を図-4 に示す。 試験体は一方が周方向パターン数 12、高さ方向パ ターン数 4、もう一方が周方向パターン数 4、高さ 方向パターン数 10 となっている。ここでのパター ン数とはダイヤパターンを成す三角形の、円筒の周 方向・高さ方向の個数を表す。 試験は前述の圧縮

図-4 ダイヤカット円筒圧縮試験の時間-変位関係

図-5 FEM による数値解と実測値

試験と同様に、載荷後 30 分間の変位を測定、その 後除荷し、同じく 30 分間の変位を測定した。周方 向パターン数 12 の試験体は変位量が少なく、また 除荷後はその変位がほとんど回復していることか ら、図-2 との円筒と同様の挙動を示している。周 方向パターン数 4 の試験体はクリープひずみが進 行しており、他方の試験体と比較すると変形の回復 も鈍い。周方向パターン数 12 の試験体の方が、よ り一般的な円筒に近いことから、ダイヤカット円筒 の軸方向の圧縮に対する強さは通常の円筒に劣る のではないかと考えられる。次に有限要素解析ツー ル CalculiX³⁾で求めた各パターン数と変位の関係 に図-4 の各試験体の最大変位をプロットしたグラ フを図-5 に示す。両試験体共に、FEM の値より変 位が大きく、特に周方向パターン数 12 の試験体で は 40 倍程度大きい。

(2) ハニカムパネルと格子パネル

図-6 FEM による数値解と実測値

有限要素解析では、ハニカムパネルの曲げ剛性 は、格子パネルよりも明らかに低くなるが、3Dプ リンターモデルでハニカムパネルと格子パネルを成 形し、曲げ試験を行なってみる。CalculiX で求め たハニカムパネルと格子パネルの曲げ剛性を正方格 子の曲げ剛性で無次元化した値と、3D プリンター で成形したハニカムパネルで曲げ試験を行い、求め た曲げ剛性を同じ方法で求めた正方格子の曲げ剛性 で無次元化した値を図-6 に示に示す。有限要素モ デルの格子パネルはハニカムパネルの材料量に合わ せて、格子のパターン数を変えており、軸方向の壁 の数が多いほど、曲げ剛性は高い値を示す。有限要 素法で求めたハニカムパネルの値と実験から得られ たハニカムパネルの値は、比較的近い値を示してい る。また有限要素解析の結果と同様に、格子パネル の曲げ剛性が FEM・実測値共にハニカムパネルの それより高い値を示している。

4. まとめ

本研究では有限要素モデルを 3D プリンターで成 形して、実際に実験をすることにより、数値シミュ レーションの妥当性を検討することがねらいであっ た。現状では、用いられる材料の不安定な性質か ら、必ずしも 3D プリンター成形モデルでの実験が、 数値シミュレーションの精確な検証に対して有効で あるとは言えない。ただし、3D プリンターの材料 や成形技術は日増しに進歩しており、今後、3D プ リンター成形モデルにより数値シミュレーションの 妥当性を検証する手法は、十分に有効な手段になっ ていくものと期待される。 参考文献

- 1) http://www.stratasys.com/
- 2) http://www.3d-printer.jp/materials.html
- 3) http://www.calculix.de/