凍結融解作用を受けるコンクリートの塩化物イオン浸透性

八戸工業大学	学生会員	○永坂	未来
八戸工業大学大学院	学生会員	市川	達朗
八戸工業大学大学院	学生会員	渡邊	浩平
八戸工業大学	正 会 員	迫井	裕樹
八戸工業大学	正 会 員	阿波	稔

28 日),水中養生を行った後,打設側面を試験面とし て,表-2 に示す凍結融解条件下で塩分浸透を実施し た.凍結融解環境への暴露期間は60サイクルとし,5 サイクルごとにスケーリング量の測定を行った.試験 溶液はNaCl水溶液であり,その濃度は1,3および5% の3水準とした.また,比較検討用に20℃一定環境に おける暴露(60日)も同時に実施した.

所定の暴露期間終了後,試験面表面から 50mm 位置 まで 10mm 間隔で試料を採取し,硝酸銀滴定法により, 深さごとの全塩化物イオン濃度の測定を行った.

実験結果および考察

図-1(a)および(b)に、全塩化物イオン濃度と最低温度到達時間の関係を示す. 図中の最低温度到達時間0時間は、温度一定条件における全塩化物イオン濃度を示している.

図-1(a)より,凍結融解を受けたものは,いずれ の最低温度到達時間においても温度一定条件の場合よ りも高い全塩化物イオン濃度を示すことが明らかとな った.また本研究の範囲では,いずれの試験溶液濃度

表-1 示方配合

W/C	s/a	単位量 [kg/m³]			AE剤	AE減水剤	
[%]	[%]	W	С	S	G	[A] [*]	[C×%]
55	43.5	158	287	794	1071	1.5	02
						× 1	A=0.001%

表-2 温度条件

条件No.	凍結 温度 [℃]	温度勾配 (降下時) 「℃/h]	最低温度 到達時間 「h]	その他
条件①	-10	-10	3	最高温度:20℃
条件②		-20	2	最低温度保持時間:3時間
条件③	-20	-10	4	昇温時温度勾配:10℃/h
条件④		-6.67	6	最高温度保持時間:1時間

1. はじめに

積雪寒冷地域におけるコンクリートはその気象的条 件から凍結融解を受けやすい環境にあり,表層劣化な ど凍害を生じる危険が高まる.また近年,凍結防止剤 の大量散布により,コンクリート中への塩化物イオン の浸透およびそれに伴う鉄筋腐食など,複合劣化が生 じやすい環境にある.

コンクリート中への塩化物イオンの浸透と凍結融解 の複合劣化に関する検討は、これまでにも行われてい るが、これらはいずれも塩化物の存在下におけるコン クリートの凍結融解抵抗性に主眼を置いたものであり、 凍結融解作用そのものがコンクリート中への塩化物イ オンの浸透に及ぼす影響については、知見が乏しいの が現状である.また、凍結融解環境下における塩化物 イオンの浸透は、凍結融解に伴い発生するスケーリン グ等の他、凍結過程における未凍結水の移動の影響も 考えられるが、その浸透メカニズムや定量的な知見つ いては乏しいのが現状である.

そこで本研究では、コンクリート中への塩化物イオ ン浸透性に及ぼす凍結融解条件の影響を検討すること を主目的とし、試験溶液濃度、降温時の温度勾配、最 低温度の違いによるコンクリート中の塩化物イオン濃 度の変化について実験的に検討を行った.

2. 実験概要

本研究では,普通ポルトラントセメント,天然砂と 石灰岩砕砂の混合砂,石灰岩砕石および,混和剤とし て AE 剤と AE 減水剤を用いた.

本研究で用いたコンクリートの配合を表-1 に示す. 供試体は,100×100×400mmの角柱供試体を100×100 ×100mmに切断したものを用いた.所定の期間(材齢

キーワード: 複合劣化, 凍結融解, 塩分浸透

連絡先:青森県八戸市大字妙字大開 88-1 八戸工業大学 工学部 TEL0178-25-8076

においても、最低温度到達時間が4時間のものが最も 低い値を示すことが明らかとなった.また図-1(b) より、11~20mmにおいては、0~10mmの傾向とは異 なり、最低温度到達時間の増加に伴い(凍結温度勾配 が小さい条件ほど)、全塩化物イオン濃度が増加する傾 向を示すことが明らかとなった.

図-2 には、11~20mm 位置における全塩化物イオ ン濃度と凍結温度の関係を示す. 図中の破線は、各試 験溶液濃度での温度一定(20℃)条件における全塩化 物イオン濃度を示している. これより本研究の範囲内 で、凍結温度が高いものほど、全塩化物イオン濃度が 大きな値を示すことが明らかとなった. これは、凍結 温度の差によるコンクリート中の未凍結水の量が異な るためと考えられる.

図-3 には、11~20mm 位置における全塩化物オン 濃度と凍結融解 60 サイクル終了時のスケーリング量 の関係を示している.図-3 より、両者の間には明確 な傾向が認められないことが把握された.これは、凍

図-3 全塩化物オン濃度とスケーリング量の関係 (深さ:11~20mm)

結融解条件下における塩化物イオン浸透性は,凍結融 解に伴うスケーリングの影響よりも,凍結融解条件に よる影響が大きいことを示唆するものと考えられる.

4. まとめ

本研究で得られた結果を以下にまとめる.

- (1)凍結融解を受けたコンクリートの全塩化物イオン 濃度は、試験溶液濃度の違いによらず、温度一定 環境におけるそれよりも高い値を示す。
- (2)表面から 11~20mm 位置において、最低温度到 達時間の増加に伴い、全塩化物イオン濃度が増加 する傾向を示す。
- (3) 最低温度が高いものほど同一深さにおける全塩化 物イオン濃度が高い値を示す.
- (3)凍結融解作用を受けるコンクリートの塩化物イオン浸透性は、凍結融解に伴うスケーリング劣化の影響よりも、凍結融解条件(温度勾配,最低温度)による影響が大と考えられる.