並木の津波漂流物捕捉割合と漂流物群密度の関連性

東北大学大学院 学生会員 林 晃大 東北大学災害科学国際研究所 正 会 員 今井健太郎 東北大学災害科学国際研究所 正 会 員 今村 文彦

1. 序論

自然力を活かした津波災害減災対策の一つとして,並 木や屋敷林など樹木列による漂流物捕捉機能を活用して いくことは景観上の観点からも有効な手法と考えられる が,並木の津波漂流物捕捉機能については,事例に基づ いた議論(首藤,1985;坂本・他,2012)と今井・他(2012) の研究例にとどまっているのが現状である.

本研究では,並木の津波漂流物捕捉効果の定量的な機能評価モデルを開発することを目的とする.本稿では,水理実験により漂流物の群体規模と並木の漂流物捕捉割合の関係性について検討を行った.さらに,既往の評価式(今井・他,2012)の高度化のための課題について検討した.

2. 水理実験

(1) 概要

漂流物の群体規模を変化させることにともなう,並木 の津波漂流物捕捉機能を検証するために水理実験を行っ た.実験装置は全長15mの断面一次元水槽(図-1)を用い た.津波氾濫流はゲート急開流れで模擬した.段波の強 度は貯留水深 H_U を変えることにより変化させた $.H_{U}=10$, 12、14 cmにおける漂流物が存在しない場合の最大平均水 位はそれぞれ1.5, 1.8, 2.2 cmである. 樹木模型は直径4 mm のステンレス円柱を用い,その配置条件は主流縦断方向 に1列に配置し、その間隔は3 cmとした、漂流物のサイ ズは木製の立方体 $(1.5^3 cm^3)$, および直方体 (4.5×1.5^2) cm^3)を用い,アスペクト比はそれぞれL/W = 1, L/W = 3とした.漂流物捕捉割合 $R_C=N_C/N_A$ (N_C :並木により捕 捉された漂流物数, N_A :全漂流物数)を定義した.ただ し,水槽側壁の影響で捕捉された漂流物については評価 から除外した. 各実験条件に対して10回反復して実験を 行い,再現性の確認を行った.漂流中の漂流物の群体規 模について検討をするために漂流物群密度 $D_{fg}=\sum s/B\cdot L$ $(\sum s: 漂流物群総面積, B: 水路幅, L: 流下漂流物群の$ 流れ方向の拡散長さ)を定義する. Lはタッチセンサを用 い,漂流物群の通過速度及び時間から求めた(図-2).

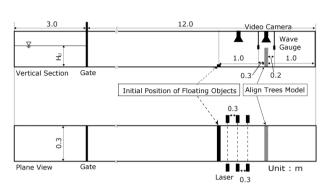


図-1 実験水路概要

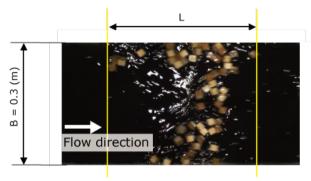
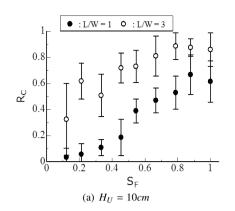
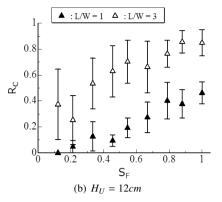




図-2 漂流物群密度の捉え方(実験水路内)

(2) 結果

津波漂流物の群体規模を変化させた場合のRcの変化を 図-3に示す.図中,群体規模SFは,漂流物数立方体99個, 直方体33個の場合を基準とした比を示し、9パターン変 化させた . 図-3から S_F が大きくなるにつれて $,R_C$ は増加 傾向にあることがわかる.また, S_F がある一定値を超過 すると, R_C も一定値に近くなることがわかる.このこと から S_F が小さい場合は、漂流物の相互干渉の影響が小さ く,漂流物が個別に振る舞うことでアーチング効果が生 じづらくなるため,多くの漂流物が捕捉されないことが 考えられる.ここでアーチング効果とは,図-4のように 漂流物群が並木に捕捉された際にアーチを形成すること で,津波の外力を受けていても押し出されずに安定した 状態となる効果である.また, S_F が大きい場合は,漂流 物の群体形成が容易となり,アーチング効果により捕捉 量が増加する傾向にある.ただし,流勢が強い場合は,漂 流中に群体を形成して並木に捕捉されたとしても,押し

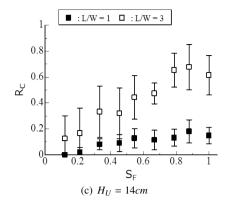


図-3 津波漂流物の群体規模と漂流物捕捉割合の関係

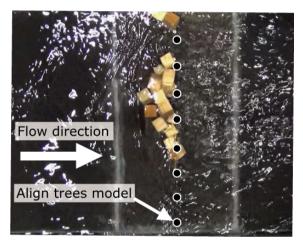


図-4 並木による津波漂流物のアーチング効果

出されることになるために、 S_F や漂流物諸元だけではなく、津波の外力によってこの傾向は変化する.

 S_F と津波の外力の関係性についてより詳細な検討をするために D_{fg} と R_C の関係を図-5に示す. ばらつきが大きいものの, D_{fg} の増加に伴って, R_C も増加している. しかし,外力の条件が大きくなるとその傾向は見られない. これは D_{fg} の値に関わらず,捕捉された漂流物が流勢により押し出されるためと考えられる.

図-3と図-4より,L/Wの値により同一の S_F , D_{fg} でも R_C の値・ばらつきは大きく異なる.今井・他(2012)では,漂流物の捕捉に関わる影響因子としてL/W, L_m/l_t (L_m :漂流物の代表長さ, l_t :並木間隔)を挙げており,今回の検討においても同様の傾向を示すことが確認できる.特に L/W=3の R_C のばらつきは大きい.L/W=1の場合, S_F が小さく,漂流物が個別に振る舞うと R_C が小さくなるが,L/W=3の場合は,漂流物が少数でも捕捉された際にアーチを形成することで R_C が大きな値を取る場合があるために,ばらつきが大きくなることが考えられる.

3. 結論

本稿では,水理実験から津波漂流物の群体規模を変化

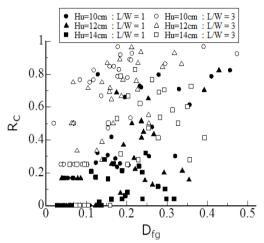


図-5 津波漂流物群密度と漂流物捕捉割合の関係

させた際の漂流物捕捉機能について検討を行った.以下に主な結論として,①同じ津波流勢において, S_F が大きくなるほど,アーチング効果により R_C が増える傾向にある.② S_F がある一定値になると, R_C は一定に近づく.③同一の S_F , D_{fg} でもL/Wにより. R_C の値・ばらつきは異なる.

今後の課題として,並木による津波漂流物捕捉割合に関する評価式の高度化をするにあたり, S_F と津波外力の関係性についてより詳細な検討が必要である.いずれの S_F において並木によるアーチング効果の影響が見込めるか,津波の外力や漂流物の形状を考慮に入れた検討が必要である.

参考文献

首藤伸夫 (1985): 第32回海岸工学講演会論文集, pp.465-469. 坂本知己, 新山馨, 中村克典, 小谷英治, 平井敬三, 齋藤武史, 木村公樹, 今純一(2012): 海岸林学会誌11(2): 65-70 今井健太郎, 林晃大, 今村文彦(2012): 土木学会論文集B2(海岸工学), Vol.68, No.2, L.401-L.405

国土地理院(オンライン):平成23年東北地方太平洋沖地震に よる被災地の空中写真, http://saigai.gsi.go.jp/h23taiheiyohr/index.html,参照5-12-2012