海氷の弾性特性および伝播する波の減衰率に関する実験

岩手大学 学生会員 〇田中和磨,川口秀一 正会員 小笠原敏記,正会員 堺茂樹

はじめに

極域の海氷は地球の気候システムにおいて重要な 役割を持ち,その発達や変形過程を理解することが 重要である.近年では,地球温暖化によって夏期の 海氷が激減している北極海において,船舶の航行や 海底資源開発に関する動きが活発化していることか ら,氷盤下の波浪特性を理解することは,工学的視 点からも必要である.Squire ら(1995)に依ると, 海氷域の末端では,個々の氷盤が存在し,波のエネ ルギー散乱の主要な因子であると示唆している.し かしながら,波と氷の相互作用は,複雑な現象であ り,氷盤の厚さや弾性率などが気象条件に大きく左 右されるため,波のエネルギーを減衰させるメカニ ズムは未解明なままである.

そこで本研究では、一定条件下で精製した氷盤を 用いて、静水場および波浪場での氷盤の強度や塩分 濃度などから、氷盤の特性を検討する.さらに、様々 な氷盤下を伝播する波の減衰特性を明らかにする.

実験の概要

実験は、まず $1m \times 8$ 枚と $8m \times 1$ 枚の 2 種類の氷盤 を精製し、氷盤の強度実験を行った。各氷盤は、海 水中に擾乱を発生させることによって、フラジルア イスを生成し、結氷させて精製したものである。強 度実験では、デジタルフォースゲージ ZP-100N(イ マダ製)を用いて一点載荷試験を行い、次式より氷 盤の弾性率 E_i を求めた。

$$E_i = \frac{PL^3}{48I\delta} \qquad \cdots (1)$$

ここで、Pは荷重、Lは氷盤から切り出した小試料の 支間長 (=40cm)、Iは断面 2 次モーメント、 δ は氷盤 のたわみを意味する. 波浪実験前の各氷盤の諸量を 表-1 に示す. 次に、冷凍室内に設置したプランジャ 一型造波水槽 (${}^{L}17m \times {}^{H}1.2m \times {}^{W}0.5m$)を用いて氷盤下 を伝播する波浪実験を行った. 初期条件として、室 温を-8℃、水深を h=80cm、および塩分濃度を 35psu

キーワード 海氷, 氷盤, 弾性率, 波高減衰

岩手県盛岡市上田 4·3·5 岩手大学工学部社会環境工学科·019·621·6889

と設定した. 造波板 (x=0m) から x=5~13m の位置 に氷盤を浮かべ, x=4m に 1 台, x=5.5~12.5m の間に 6 台, x=14m に 1 台の超音波センサー (サンプリン グ周波数 100Hz)を設置し,水面及び氷盤の各変位 を計測した. 2 種類の入射波高 H を設定し, x=4m で 計測した水面変位より求め,それぞれ H=3.2,4.2cm であった. また,周期 T は 0.2 秒間隔で,1.0 秒から 1.8 秒までの 5 種類の規則波とした.氷盤の塩分濃度 は,各氷盤からサンプルを採取し,融解後に塩分分 析機より求めた. 波浪実験は,表-1 の 2 種類の氷盤 に加え,CASE2 の氷盤を任意の波によって破壊させ た 5 枚の氷盤 (CASE3)も用いた.このときの各氷 盤長は先端から 0.7, 1.5, 1.7, 2.0,0.8m であった. なお,実験に用いた水槽の概要を図-1 に示す.

表-1 各氷盤の諸量

No.	全氷長	曲げ強度	氷厚	弾性率
	L_i [m]	σ_i [kPa]	h_i [cm]	E _i [MPa]
CASE 1	1@8	77.7	5.9	30.09
CASE 2	8	57.0	6.0	4.64

図-1 氷海-波浪水槽と装置の位置

氷盤の強度

図-1 は、CASE1(1m×8 枚)の氷盤での静水場と 波浪場における弾性率 E_i の比較を示す.静水場では、 E_i の値が最小1.7MPaから最大60.4MPaまでと比較的 バラついた分布となるが、波浪場では、 E_i の値が何 れの氷盤においても20MPa以下となり、静水場に比 べて大きく減少することがわかる.そこで、各氷盤 の減少率 E_{i*} を次式より算出する.

図-2 静水場および波動場における CASE1 の氷盤 の弾性率 *E_i*の比較

図-3 静水場に対する波動場の弾性率の減少率 E_{i*}

$$E_{i*} = \frac{\left|E_{is} - E_{id}\right|}{E_{is}} \times 100 \qquad \cdots (2)$$

ここで, *E*_{is}および *E*_{id}は静水場および波動場の弾性率 を意味する.式(2)より求めた減少率 *E*_{i*}の結果を図-2 に示す.なお,静水場より波動場の弾性率が大きい 値を示した *x*=6m は除いた.減衰率が 60%を越える ような氷盤が多く存在することがわかる.この原因 として,フラジルアイスから成る氷盤は,小さな氷 晶同士の固結によって大きな氷に成長するため,そ の面に外力が加わると,乱れのない状態で作られた 氷よりも壊れやすい性質がある.したがって,波動 運動による外力を受け,固結したフラジルアイスが 緩み,その隙間に海水が入ることによって更に柔ら かくなったと推測される.

氷盤下における波の減衰特性

波の減衰率を検討するために,計測位置での水面 変位データを基に,次式より振幅Aを求める.

$$A = \frac{1}{n} \sum_{j=1}^{n} \left| A_j \right| \qquad \cdots (3)$$

ここで, n は振幅数を意味し, 反射波の影響が少ない

図-4 氷海ー波浪水槽と装置の位置

造波後の4振幅を用いた.図-4は、波の減衰率と周 期の関係を示す.なお、図中に小笠原ら(2011)の 同水槽実験によるグリースアイスおよびパンケーキ アイスの氷況下での減衰率を比較として示す.また, A₀は x=4m の開水域における入射波の振幅である. 何れの氷盤においても、波の減衰率は長周期になる に連れて小さくなる.一方,氷盤長の違いでは、シ ート, ランダム, 矩形の順に小さくなる. 既存の研 究では、 氷盤間の開水域での反射と氷盤相互の衝突 によって,氷盤長が短いほど減衰率が大きくなると 言われていた. また, 片山ら (1997) による様々な 氷盤長の模型氷を用いた実験では,氷盤長による顕 著な相違は見られず、周期のみに依存すると結論し ている.この要因として、本実験の氷盤の弾性率が 模型氷に比べて、1 オーダー小さいため、柔らかい氷 盤下を波が伝播することによって、氷盤底面の摩擦 抵抗が大きく働いたのではないかと推察される.シ ートアイスでは、開水域がないため、摩擦がより強 く作用したのではないかと予想される. ただし、氷 盤の弾性率は,動的法と静的法の二つの測定があり, 今回は静的法を用いたが,様々な静的法の計測があ るため、その他の計測による弾性率の算出も検討す る必要があると言える.

参考文献

Squire, V.A., J.P. Dugan, P. Wadhams, P.J. Rottier and A.K. Liu. (1995): Of ocean waves and sea ice. Annu. Rev. Fluid Mech., 27,115–168.

小笠原敏記,川口秀一,堺茂樹(2011):フラジル/グリー スおよびパンケーキアイス氷況下を伝播する規則波の 減衰特性,土木学会論文集 B2(海岸工学), vol.67, No.2, 2011, I_421-I_425.

片山潤之介ら(1997):氷盤群下の波浪変形特性に関する 実験,海岸工学論文集,第44巻,pp.146-150.