横方向力及び上揚力を受ける上路式鋼トラス橋の 静的非線形挙動に関する数値的考察

東北大学 ○学正員 塚田 健一 東北大学大学院工学研究科 正員 斉木 功 東北大学大学院工学研究科 正員 山田 真幸 東北大学大学院工学研究科 正員 岩熊 哲夫

1. まえがき

近年の大津波の被害調査により1), 橋梁被害の特徴と して支承部の破壊により桁が流失することがわかってき た.このために上部構造の津波耐荷力に関しての知見は 少なく, 支承部及び下部構造が健全であった場合, 津波 外力に対する上部構造の耐荷力の検討が必要となる。そ こで本研究では津波外力を横方向力及び上揚力にモデル 化し, 上路式鋼トラス橋を対象とした非線形有限要素解 析により上部構造の耐荷力向上の可能性について検討し ていく.

2. 基本モデル

橋長70m, 幅員8.6m, 桁高10m, 主構間隔8mの 単径間上路式プラットトラス橋を道路橋示方書2)に準じ て設計した.これを基本モデルとし図-1に示す.上弦 材,下弦材及び垂直材は箱型断面,斜材及びストラッ トはI型断面、上下横構及び対傾構はT型断面とした. RC 床版を板要素、鋼部材を梁要素によりモデル化し た. その際、格点間は剛結、床組と床版間は剛体要素で 結合した. 鋼材はすべて SM400 を想定した弾塑性体と して, Young 率 2.1×10¹¹ N/m², von Mises の降伏条 件を用い、初期降伏応力 235 N/m²、塑性係数を Young 率の 10^{-2} 倍とした. RC 床版は弾性体とした.

有限要素解析には,幾何学的および材料非線形を考慮 した汎用ソフト NX NASTRAN を用いた.

3. 津波外力モデル

横方向力は、道路橋示方書の風荷重に準じた水平圧力 から求め、流速 5.0 m/s のときの主構片面の単位部材長 あたりの荷重 W_H とした. また,流速で W_H の値が変 化することを考慮し、荷重パラメータ f を導入し、 $f \times W_V$ は流速に依存しないため、D と W_V を先行載荷し W_H として載荷する。 W_H は、設計地震力の約 5 倍であ た後に、 W_H を荷重パラメータ f によりゼロから漸増 る.

ら3)の桁橋への上揚力モデル算定式を用いて橋軸方向単 当塑性ひずみが2%となるときを鋼材の破断と想定し、 位部材長あたりの荷重 W_V とした. W_V は、流速に依存 このときの f の最大値 f_{max} を耐荷力とする.

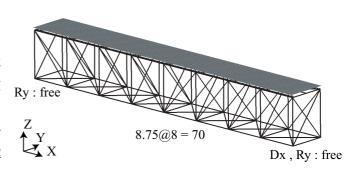


図-1 基本モデル

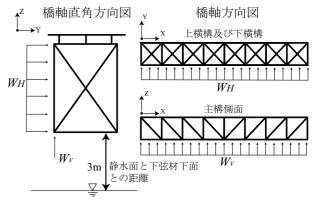


図-2 津波外力モデル

せず一定である.

 W_H は主構片面へ作用させ、 W_V は同じ主構面下弦材 のみに作用させた. 主構両面に作用させた場合, 橋軸方 向まわりの転倒モーメントを減少させるため主構片面の みの載荷とした. 図-2に津波外力モデルを示す.

死荷重による橋軸方向単位長さあたりの荷重Dと 載荷させることとした. よって荷重は $D+W_V+f\times W_H$ 上揚力は、津波高さが上弦材まで達するとして、幸左とした。 $D と W_V$ の比は、1:0.43である。また、相

Kev Words: 鋼トラス橋, 非線形 FEM, 津波荷重, 対傾構

4. 解析結果及び考察

基本モデルでは $f_{max}=0.67$ であった. 圧縮側端対傾構が座屈したことにより、相当塑性ひずみが 2% に達した. 2 - 3 に破断時の端対傾構の相当塑性ひずみ分布を示す. 圧縮側端対傾構の格点中間部が破断することがわかる. 対傾構を補強することにより耐荷力の向上をもくろみ、以下の検討を行った. このとき、鋼重増加のコストに対する耐荷力向上を評価パラメータ β

$$\beta = \frac{V}{V'} \times \frac{f'_{\text{max}}}{f_{\text{max}}} \tag{1}$$

により評価する. ここで、V は基本モデルの端対傾構及び端下横構の体積である. V'、 f'_{max} は検討後の同部材の体積及び耐荷力であり、基本モデルでは $\beta=1$ となる.

(1) 基本引張型モデルによる断面積の検討

設計では考慮していない圧縮側端対傾構及び圧縮側端 下横構を取り除いたモデルを基本引張型モデルと呼ぶ ことにする. 基本引張型モデルの f_{max} は 0.58 であり, このとき端下横構固定支承格点部で破断が起こった. また、基本モデルで座屈に至った f = 0.67 では、基 本引張型モデルにおいて圧縮側端対傾構及び端下横構 すべての箇所で相当塑性ひずみが2%を超えていた.こ のことより, 基本モデルでは圧縮側端対傾構で座屈し た直後に引張側同部材が破断すると考えられ、設計で 考慮されていない圧縮部材の座屈は本橋全体の崩壊を 引き起こす critical member といえる. そこで, critical member を圧縮部材ではなく引張部材とするため、この 基本引張型モデルの端対傾構及び端下横構の断面積を増 加させ解析を行った.表-1に端対傾構及び端下横構断 面積を増加させたときの f_{max} の値を示す. 表-1より, 端対傾構及び端下横構断面積を両方同時に増加させる ほうが、 f_{max} 及び β の向上を期待できることがわかっ た. 端対傾構及び端下横構断面積100%増加のとき, $f_{\text{max}} = 1.1 > 1$ となったが、 $\beta = 0.83 < 1$ であり、 f_{max} は増大したものの効率のよい補強ではないことがわかっ た.

(2) 端対傾構の骨組構造による検討

耐荷力及び β を向上させるために、端対傾構への骨組として \mathbf{Z} -4に示すラティス型モデルを提案する。また、端対傾構断面は基本モデルと同じにした。ラティス型モデルでは端対傾構が座屈し、端下横構及び端対傾構は降伏したが、どの部材も破断には至らず $f_{max}=1.52$

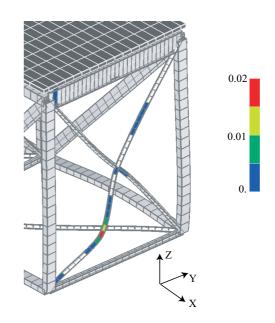


図-3 破断時の相当塑性ひずみ分布(変形1倍)

表-1 端対傾構及び端下横構断面積増加 (%) と f_{max}

端下横構	0	50	100
0	0.58	0.69	0.80
50	0.67	0.81	0.89
100	0.75	0.88	1.1

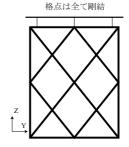


図-4 ラティス型モデル

となった. 格点間距離が小さくなり、座屈するまでの耐荷力が大きくなったといえる. このとき、 $\beta=1.42>1$ であり、鋼材使用量は $f_{max}=1.1$ のときの引張型モデルおける検討結果より小さく、基本モデルに対して効率よく耐荷力の向上がなされたといえる.

参考文献

- 国立技術政策総合研究所,独立行政法人土木研究所:東 北地方太平洋沖地震による橋梁の被災調査概要報告, 2011.
- 日本道路協会: 道路橋示方書·同解説Ⅰ共通編Ⅱ 鋼橋編, 2012.
- 3) 幸左賢二, 宮島昌克, 藤間功司, 小野祐輔, 重枝未玲, 廣岡明彦, 木村吉郎:津波による道路構造物の被害予測 とその軽減策に関する研究, 道路政策の質の向上に関す る技術研究開発成果報告レポート, No.19-2, 新道路技 術会議, 2010.