水温が源流域の水生昆虫に与える影響

東北大学 学生員 〇新井 涼允 東北大学 正会員 高橋 真司 東北大学 学生員 糠澤 桂 京都大学 正会員 竹門 康弘 東北大学 正会員 風間 聡

1. はじめに

水温は河川環境の中においても水生昆虫群集に与える影響が大 きいことが知られている¹⁾. これまで水生昆虫群集と水温の関係性 を評価する研究は多く行われているが、複雑な物理環境により構成 される現地の河川環境において正確に水温の影響を検知すること は困難である. 一方, 室内実験により水温が水生昆虫に与える影響 はしばしば測定されているが2,これら研究は実験対象が単一の種 に限定されるため、群集全体への水温の影響は理解されない、

一般的に山間部における源流域は森林地域に分布することが多 いため、その森林と森林士壌の効果により、年間を通じて降雨によ る流出作用が緩和され3水質が一定に保たれる4ことが知られてい る. 一方、水温は異なる源流域においても標高や季節の変化に応じ て大きく変動する.このため、源流域において異なる標高・季節を 対象として調査地点を設定することにより、水温の変化が水生昆虫 群集に与える影響を従来よりも正確に把握することが可能である. 以上の観点より、本研究においては、異なる時期・標高の河川源 流域を調査し、河川水温が水生昆虫群集に与える影響を定量的に評 価した.

2. 研究对象河川

宮城県中央部に位置する名取川流域内の源流域において、全4地 点の調査地点を設定した、それぞれの調査地点は上地森林内を流れ る類似した水勢および勾配を有する次数1の河川に位置しており、 標高200m, 400m, 600m, 800m となるよう設定した. 対象可川の 例として標高200mと600m地点を図-1と2に示す。

図 - 1 標高 200m 地点

図 - 2 標高 600m 地点

3. 方法

2011年の7/13,8/10,9/16,10/11それぞれ全調査地点において調査を 行った、水温は各調査地点においてデジタル水温計を用いて河川の 表層を測定した、水生昆虫群集の定量サンプリングはコドラード付 きサーバーネット (30cm×30cm, メッシュサイズ250µm) を用い 行った. サンプルは現地において99.5%エタノールを用い固定して 実験室に持ち帰り、室温において保存した、サンプルを150倍の実 体顕微鏡を用いて日本産水生昆虫検索図鑑と原色川虫図巻に従い 可能な限り細がい分類レベシレ(種・属・科・目)の同定を行い、そ れらをまとめて分類群とした。その後、サンプルごとに水生昆虫の 分類群数、分類群ごとの個体数密度、分類群ごとのバイオマス(現 存量) を計測した.

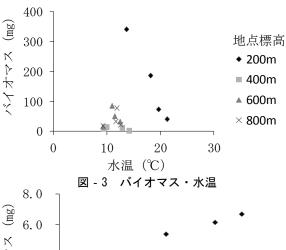
4. 結果と考察

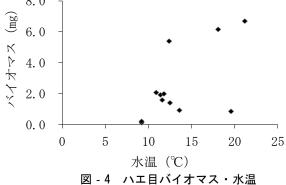
4.1 バイオマスと水温の関係

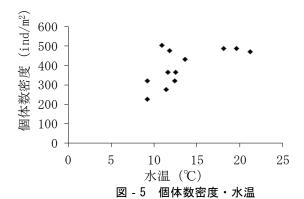
全サンプルからなるバイオマスと水温の関係をみると、標高 200m 地点において高いゾイオマスを示すという傾向が得られた (図-3). また、標高400m 地点においては全ての調査時期におけ るバイオマスが小さな値を示した。他の調査地点における河床基質 が石礫および砂により構成されるのに対し、標高400m 地点は主に 岩盤のみから構成されている。このため、本研究においては標高 400m 地点を他3 地点と比較して著しく水温以外の河川環境が異な る地点と判断し、以下解析において除外している.

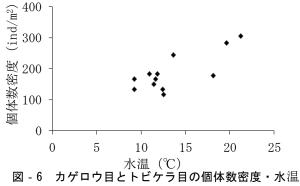
双翅目ごとのバイオマスと水温の関係を見たところ、相関が確認 された (R2=0.38, P<0.05; 次ページ参照 (図-4). これは双翅 目の全バイオマスに対して、51.9%を優占したユスリカ科の影響で あると考えられる. ユスリカ科の生息を可能にする適温域が0~ 35℃程度⁵⁾ であるのに対し、本調査においては10~20℃程度の範囲 に限定されていた、従って、今後は調査の期間を長くすることによ り、さらに広範な水温環境における水生昆虫群集を評価する必要が ある.

4.2 個体数密度と水温の関係


標高400m 地点を除いた全サンプルからなる個体数密度と水温の 関係については相関 (R2=0.40, P<0.05) が確認された (図 - 5). 特にカゲロウ目とトビケラ目の個体数密度を合わせて得られた水 温との関係は強 相関 (R2=0.60, P<0.05) がみられた (図-6). カゲロウ目は水温低下によって種構成が減少する6 ため水温の低い 調査地点においてカゲロウ目が減少したことが原因と考えられる. これに対してカワゲラ目と水温の関係については水温が高くなる につれて個体数密度が低下する傾向 (R2=0.20) がみられた (図 - 7). これは、カワゲラ目の全個体数密度に対して13.6%を優占したモン カワゲラ属と17.9%を優占したユビオナシカワゲラ属が寒冷な水域 を選好して生息する7 という特徴を有していることから、本流域こ おいても標高の高い冷涼な地域である、標高 600m 地点と 800m 地 点のみに分布していることが原因と考えられる.


個体数密度と水温に関して有意な相関を得られたが、バイオマス と同様にさらに広範な水温をみることによって線形近以以外の相 関を得られるとも予測され、今後の研究が必要である.


謝辞: 本研究は, 科学研究費補助金 (21254003, 代表: 竹門康弘; 22360192, 代表: 風間聡) の助成を受けたものである. ここに深 甚なる謝意を表します.


参考文献

- Stevens L.E., Shannon J. P. & Blinn D. W. : Colorado River enthic ecology in Grand Cnyon, Arizona, USA: dam, tributary and geomorphological influences., Regulated Rivers: Research & Management 13, 129-149, 1997
- Arden R. Gaufin and Stephen Hem: Laboratory Studies on Tolerance of Aquatic Insects to Heated Waters, Journal of the Kansas Entomological Society Vol. 44, No.2, pp.240-24, 1971
- 久保田多余子:森林の洪水防止機能を評価する試み、森林総合研究所所 報 3,8~9,2002
- 4) 山田毅:森林流域こおける渓流水質、森林総合研究別四国支別四国情報、 27, 2002
- 5) 近藤繁生ら (編): ユスリカの世界, 培風館, 2001
- 6) Pardo I., Canmbell I. C. & Brittain J. E.: Influence of dam operation on mayfly assemblage structure and life histories in two south-eastern Australian streams., Regulated Rivers: Research & Management 14, 285-295, 1998
- 川合禎次 (編:日本産水生昆虫-科・属・種への検索、東海大出版会、 2005

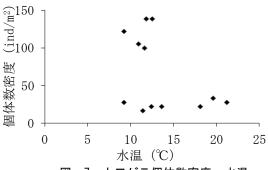


図 - 7 カワゲラ個体数密度・水温