ラボスケール嫌気性 MBR による都市下水の処理性能評価

東北大学工学部 学生会員 〇砂庭崇之 東北大学大学院工学研究科 学生会員 高橋慎太郎 東北大学大学院環境科学研究科 正会員 李玉友 東北大学大学院工学研究科 正会員 原田秀樹

1. はじめに

近年,下水処理における活性汚泥法は次の問題点が 指摘されている。(1)消費エネルギーが大きい。(2)必要 面積が大きい。(3)温室効果ガスの排出。これらの問題 を解決するために下水処理プロセスにおける嫌気性処 理の導入が望ましい。嫌気性処理は曝気の必要が無く, 余剰汚泥の発生量も少ないため省エネルギー化が期待 できる。また高負荷への対応が可能なため、反応槽の 容積を抑えることで省スペース化も可能となる。一方 で,処理水質が活性汚泥法と比較して悪いことや,汚泥 の流出といった問題点が存在する。そこで嫌気性処理 に膜分離技術を導入した嫌気性膜分離法は新たな廃水 処理プロセスとして注目を集めている。特に膜エレメ ントを反応槽内部に浸漬させた浸漬型嫌気性膜分離法 (SAMBR:Submerged anaerobic membrane bioreactor) は 省エネルギー,省スペースでの運転が可能であり,既に 高濃度廃水の処理等に適用されている。しかしながら SAMBR による都市下水等の低濃度廃水の研究例は少 なく, その中でも中温条件より低い温度条件での処理 特性は十分に明らかになっていない。

本研究ではラボスケールの SAMBR を用いて、中温 条件より低い温度条件で都市下水をモデルとした溶解 性人工下水の連続処理実験を行い、SAMBR の処理特 性の評価を行った。

2. 実験方法

図-1 に本実験に用いたラボスケール SAMBR の概略 図を示す。有効容積は 6 L であり,内部に膜担体を浸漬させている。本実験で用いた膜担体は Kubota 平膜 (MF, 膜面積 0.116 m^2 , 公称孔径 $0.2~\mu$ m,膜材質塩素化ポリエチレン)であった。反応槽内の温度は槽外部に 25 °C の水を循環させることで 25 ± 2 °C に調整した。また発生したガスの一部を循環させ,反応槽に散気を

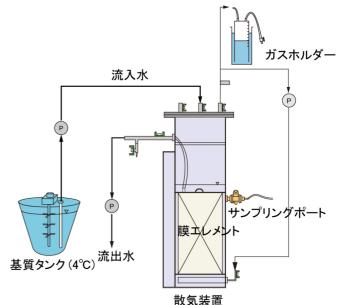


図-1 SAMBR 概略図

表-1 人工下水の性状

成分	平均値	
$COD_{Cr}(mg/L)$	463	±116
C-BOD(mg/L)	309	±86
糖(mg/L)	77	±60
タンパク質 (mg/L)	89	±12
pH	7.55	±0.39

行った。この散気は反応槽の撹拌を行うとともに,膜表面にせん断力を発生させ,膜ファウリングを抑制させるために必要である。HRT は基質の投入量と膜透過水の引き抜き量によって調整し,HRT 2 日の条件で開始し,その後 HRT の制御によって段階的に負荷を上昇させた。

リアクターの処理性能を把握するために処理水及び 反応槽内のCOD_C(以下COD), C-BOD(以下BOD), 糖,

キーワード:都市下水,嫌気性膜分離法,HRT

東北大学大学院工学研究科 土木工学専攻 〒980-8579 宮城県仙台市青葉区荒巻字青葉 6-6-06 環境保全工学研究室 TEL:022-795-3584 FAX:022-795-7465 タンパク質、pHを定期的に分析した。SS、VSS濃度、ガス生成量、ガス組成、膜圧、膜透過水フラックスのモニタリングを行った。種汚泥として中温消化汚泥と食品工場排水の処理汚泥を用いた。また表-1にSAMBRが処理を行う人工下水の性状を示す。

3. 実験結果

図-2 に流入水, 処理水中における COD 濃度とBOD 濃度の経日変化を示す。運転期間全体における流入 COD が 400~500 mgCOD/L であるのに対し, 流出 COD は 20~50 mgCOD/L であった。BOD の処理水は 40 mg/L 以下であった。また処理水中のタンパク質が 10 mg/L 以下, 糖は検出限界以下であった。表-2 に各 HRT の処理性能を示す。各 HRT における COD 除去率は 92~94%, 処理水の平均 COD は30 mgCOD/L 前後であった。BOD 除去率は 92~94%, 処理水の平均 BOD は 20 mg/L 前後であった。HRTを 0.25 日に上げた後, 処理水の COD, BOD の値は一時的に 257 mgCOD/L, 100 mg/L に上昇したが, 運転の継続により処理水質は改善されている。

発生ガス中の定常状態におけるメタン濃度は運 転開始時には 10%であったが、一定の割合で増え 続け、最終的には 80%前後であった。 また HRT 0.5 日における発生ガス量は人工下水1Lあたり0.16L であった。図-3 に HRT 0.5 目における COD 物質収 支を示す。その割合はメタンガス 87.4%, 流出水 4.5%, その他 8.1% であった。 その他 8.1% は菌体とし て反応槽に蓄積されたと考えられる。図-2に示すよ うに反応槽内 SS 濃度は運転開始 12 日目の 4,540 mg/L から 96 日目には 8,540 mg/L まで増加した。 VSS 濃度は運転開始 12 日目の 3.640 mg/L から 96 日目には 7,560 mg/L まで増加した。図-4 に除去 COD あたりの汚泥収率を示す。HRT 1 日, 0.5 日, 0.25 日において除去 COD 1 g あたりそれぞれ 0.15 gVSS, 0.1 gVSS, 0.15 gVSS の汚泥が増加していた。 膜透過水の引き抜き時の圧力は運転開始当初は 5 kPa 程度であったが、HRT を 0.5 日に短縮した後、急 激に上昇し,20 kPa を超える圧力を示した。

また,運転 69 日目にリアクタートラブルが発生 し,汚泥の一部がリアクター外に流出した。汚泥濃 度は低下したが,HRT 1日の負荷での運転によるリ カバリー期間を経て,通常の運転を再開した。

4. まとめ

(1) 各 HRT の処理水の COD, BOD はそれぞれ 30

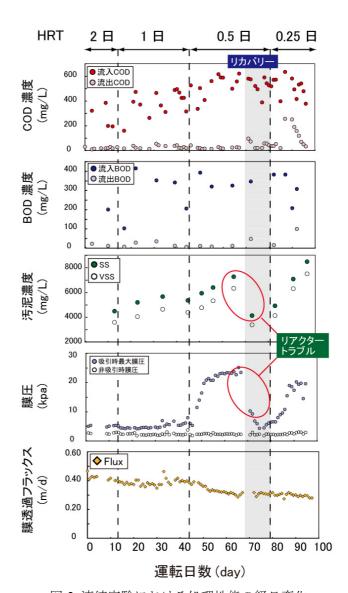


図-2 連続実験における処理性能の経日変化

表-2 各 HRT における処理性能

-	項目 単位			HRT (運転 100 日目現在)			
	块口	中山	2日	1日	0.5 日	0.25 日	
膜透	COD _{Cr}	mgCOD/L	20	30	31	121	
過水	C-BOD		18	18	20	100	
除	COD _{Cr}		93.1	92.4	93.9	78	_
除去率	C-BOD	%	92.2	93.7	94.2	67.5	
COD の割合 (%)	投入 COI - 100%		*	3ンガス 87.4% 他 8.1%			

図-3 反応槽の COD 物質収支

Īn

図-4 汚泥収率

mgCOD/L, 20 mg/L 前後であった。

Out

(2) HRT 0.5 日において,投入 COD の 87.4% はメタンガ スとして回収され,汚泥の転換率は 10% であった。