東北学院大学大学院工学研究科 学生会員 〇菅原 康太 東北学院大学工学部 正会員 河野 幸夫

1. 序論

現在のパイプラインの設計には静的の水撃圧と強度を 使用して肉厚の設計をおこなっている。しかしながら動 的の水撃圧の影響によってパイプラインが破壊するとい う事故が実際に起こっている。一般的に水撃圧とは流動 している液体が弁によって急閉鎖される事によって管内 に発生する急激な圧力上昇の事を言い、これが動的に管 路の内側に負荷される。このような水撃圧を動的な負荷 として扱った研究はほとんど見られない。そこで本研究 では、市販の塩化ビニル管を供試体とし、管路を遮断弁 を用いて急閉鎖し、発生する水撃圧を用いての破壊実験、 および水圧載荷による緩閉鎖のような、なだらかに圧力 が上昇する準静的から動的な管の破壊実験を行った。ま た、高速度カメラを用いて動画撮影を行う。管破壊実験 では、撮影と同時に管破壊圧力と載荷時間を測定した。 管の破壊には載荷時間が、破壊の特性に大きく影響する ことから、破壊形状と破壊力積という観点から破壊領域 を明らかとするため検討を行う。また強度変化について も検討する。

2. 円柱座標系における半径方向の運動方程式

円管の微小要素での半径方向の運動方程式を誘導し、 薄肉円管の場合を考慮すると、運動方程式は次式で示される。

図-1 半径r、角度 θ における管の断面図

$$\rho h \frac{\partial v}{\partial t} = p - \frac{\sigma_{\theta} h}{r}$$

h = 円管の肉厚、r = 半径 p = 内圧

上式を roから rまで積分、整理すると次式になる。

$$2\pi\int_{r_0}^r prdr = 2\pi r_0 h_0 \int_0^{\varepsilon_0} \sigma_\theta d\varepsilon_\theta + \pi \rho r_0 h_0 \cdot v^2$$

- ε_{θ} = 円周方向のひずみ h_{θ}, r_{θ} = 円管肉厚, 半径
- 2. 上式において W_e = 内圧のなした仕事, W_p = 塑性 変形に費やした仕事, W_k = 運動エネルギーに費やし た仕事とすると以下の式になる。

キーワード 水撃圧、強度、力積、運動エネルギー

住所 宮城県多賀城市高崎 3-17-7

上式において W_e = 内圧のなした仕事, W_p = 塑性変形 に費やした仕事, W_k = 運動エネルギーに費やした仕事と すると以下の式になる。

$$W_e = W_p + W_k$$

3. 実験方法

3.1 水擊管破壞実驗方法

供試体を管路に接続し、管路軸方向の伸びの発生や偏心、 引張りなど他の作用力が働かないように4本のL字フレー ムにより実験装置を確実に固定する。

電磁弁と手動弁を全開にして上部水槽から下部水槽へ水 を自然流下させ、流速を測定する。水を流出させる際、静 水圧および流速を安定させるために上部水槽をオーバーフ ローさせておく。電磁弁により管を急閉鎖した際に発生す る水撃圧によって供試体を破壊する。

図-2 水撃圧破壊の実験装置図

3.2 水圧破壊実験方法

供試体を実験装置に接続し、水撃圧破壊実験と同じよう に、4本のL字フレームにより実験装置を確実に固定する。 流量調節弁により流量の調節を行い、電動ポンプにより 水圧載荷することで供試体を破壊する。

4 実験結果

4.1 全ての実験結果

図は圧力と強度に対する載荷時間のすべての実験デー タを示したものである。さらに載荷時間の変化による破 壊形状も分布も示している。実際に塩化ビニル管の持つ 強度は 56.0 (N/mm²)であるが、グラフを見ると載荷時間 が短くなるにつれて強度は上昇していき、動的になると 強度は約 70 (N/mm²)という、約 1.3 倍もの値を示してい る。また載荷時間が 0 秒に近い地点では圧力が大きくば らついているのが分かる。

図-3 圧力と強度と水圧載荷時間の関係

4.2 載荷時間と破壊力積による破壊領域の検討

図-4 は実験で得られた圧力波形である。圧力と時間の 関係において、波形の圧力の増加前を基準線とし、圧力 上昇開始から管が破壊して圧力が急激に下降するまでの 波形と基準線の間の面積を破壊力積とした。

図-4 圧力波形

載荷時間の変化が、管破壊にどのように影響を及ぼす かを求めるため、載荷時間が変化したときの、破壊力積 の変化を考慮した破壊領域の検討を行った。また、破壊 圧力による領域の検討と同様、破壊力積の変化から、破 壊の特性の違いを表わす3つの領域を求めることとした。 破壊力積は圧力波形の特徴の変化から0へ収束していく。

図-6 は水圧破壊実験をした時の載荷時間が 0.78 秒(動的 破壊)の時をグラフである。ひずみを求めるためにグラフ から 20 点抽出し、撮影した写真から各々のひずみを求め る。求めたひずみと応力から描いたのが図-6 の応力ひず み曲線である。

図-7 点(20)の写真

図-8 載荷時間 0.78 秒の応力ひずみ曲線

求めた応力ひずみ曲線の面積を求めそれを以下の式に代 入することによって塑性変形に費やした仕事 Wp を求め ることができる。

=1666.26(N/mm²)

また同様に写真から膨らみ速度 v を求め以下の式に代入 すると運動エネルギーWk を求めることができる。

$$W_k = \pi \rho r_0 h_0 \cdot v^2$$

= $\pi * 102(kgf \cdot s^2 / m^4) * 0.028(m) * 0.0004(m) * 0.015^2(m / s)$
= $8.0 \times 10^{-6} (N)$

水圧破壊実験(動的破壊)においては運動エネルギーWkの影響は非常に小さいことが分かる。

次に水撃管破壊実験(衝撃的破壊)の時の膨らみ速度を求 めるのだが、この時の載荷時間は0.05秒程度である。こ ちらも同様に写真から求める。その結果膨らみ速度は 34m/sという値が得られた。これを以下の式に代入する。

$$W_k = \pi \rho r_0 h_0 \cdot v^2$$

 $= \pi * 102(kgf \bullet s^2 / m^4) * 0.028(m) * 0.0004(m) * 34^2(m/s)$ = 40.35(N)

水圧破壊と水撃破壊の運動エネルギーを比較すると 10⁸ 倍のエネルギーを持っていることが明らかになった。

5. 結論

(1) 実際に塩化ビニル管の持つ強度は 56.0 (N/mm²)で あるが、動的になると強度は約 70 (N/mm²)という、約 1.3 倍もの値を示している。

(2)破壊形状・破壊力積より準静的から動的に行くに従っ て力積が0に収束していき、ばらつきが小さくなること が明らかになった。また破壊領域を大きく三つに大別す ることができ、破壊領域は準静的領域、動的領域、遷移 的領域の3つに分類することができた。

(3)水圧管破壊と水撃管破壊の運動エネルギーを比較すると、水撃圧による管破壊の方が10⁸倍のエネルギーを持っていることが明らかになった。